Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy: \(\left(x-5\right)^{88}\ge0\)
\(\left(x+y+3\right)^{496}\ge0\)
\(\Rightarrow\left(x-5\right)+\left(x+y+3\right)^{496}\ge\) ( Đó là điều đương nhiên )
Vậy: \(x;y\in R\)
\(\left(x-5\right)^{88}+\left(x+y+z\right)^{496}\ge0\)0
Dấu "=" xảy ra kih và chỉ khi \(\hept{\begin{cases}\left(x-5\right)^{88}\\\left(x+y+3\right)^{496}\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\5+y+3=0\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}x=5\\y=-8\end{cases}}\)
\(\left(x-\frac{1}{3}\right)\left(y-\frac{1}{2}\right)\left(z-5\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\\y=\frac{1}{2}\\z=5\end{cases}}\)
Vì \(z+3=y+1\Rightarrow y=7\)
Lại có \(y+1=x+2\Rightarrow x=8-2=6\)
Vậy x = 6 ; y = 7 ; z = 5
cách 1:=> (x - 7)^(x+1)= (x-7)^(x+11)
TH1: x-7=0 => x=7 => 0^8=0^18 (TM)
TH2: x-7=1 => x=8 (TM)
TH3: x khác 7 và 8 => x+1=x+11 => vô lý => loại
KL: x = 7 hoặc x=8
( x-7)^( x+1) - ( x-7)^(x+11) = 0
( x-7)^( x+1) - ( x-7)^(x+1)*x^10 = 0
( x-7)^( x+1) (1-x^10) = 0
tới đây dễ òi
câu 1: Câu hỏi của Vương Ái Như - Toán lớp 7 - Học toán với OnlineMath
câu 2:
Ta có: \(8^7-2^{18}=2^{21}-2^{18}=2^{17}.\left(2^4-2\right)=2^{17}.14⋮14\)
câu 3:
\(4x=7y=3x\Rightarrow\frac{4x}{84}=\frac{7y}{84}=\frac{3z}{84}\Rightarrow\frac{x}{21}=\frac{y}{12}=\frac{z}{28}=\frac{x+y+z}{21+12+28}=\frac{61}{61}=1\)
\(\Rightarrow x=21,y=12,z=28\)
câu 4:
\(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\Rightarrow\frac{a}{2}=\frac{2b}{3}=\frac{3c}{4}\Rightarrow\frac{a}{2.6}=\frac{2b}{3.6}=\frac{3c}{4.6}\Rightarrow\frac{a}{12}=\frac{b}{9}=\frac{c}{8}=\frac{a-b}{12-9}=\frac{15}{3}=5\)
\(\Rightarrow a=5.12=60,b=9.5=45,c=8.5=40\)
Do \(\left(x+\frac{1}{2}\right)^2\ge0;\left(y-\frac{1}{2}\right)^{1998}\ge0\)
Mà theo đề bài, \(\left(x+\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^{1998}=0\)
=> \(\hept{\begin{cases}\left(x+\frac{1}{2}\right)^2=0\\\left(y-\frac{1}{2}\right)^{1998}=0\end{cases}}\)=> \(\hept{\begin{cases}x+\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{-1}{2}\\y=\frac{1}{2}\end{cases}}\)
Vì (x+1/2)^2 và (y-1/2)^1998 luôn lớn hơn hoặc bằng 0
=>(x+1/2)^2=0 và (y-1/2)^1998=0
x+1/2=0 và y-1/2=0
x=-1/2 và y=1/2
Vậy vời x=-1/2 ;y=1/2 thì (x+1/2)^2+(y-1/2)^1998=0