K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 7: Cho đường tròn (O; R), điểm M nằm ngoài đường tròn. Từ M kẻ hai tiếp tuyến MA,MB với đường tròn (A, B là các tiếp điểm). Nối MO cắt cung nhỏ AB tại Na) Cho OM = 2R. Tính AON và số đo A NBb) Biết AMB = 36o . Tính góc ở tâm hợp bởi hai bán kính OA, OB.Bài 8: Cho tam giác ABC cân tại A. Vẽ đường tròn tâm O, đường kính BC. Đường tròn (O)cắt AB, AC tương ứng tại M và N.a) Chứng minh các cung nhỏ BM và CN có số...
Đọc tiếp

Bài 7: Cho đường tròn (O; R), điểm M nằm ngoài đường tròn. Từ M kẻ hai tiếp tuyến MA,
MB với đường tròn (A, B là các tiếp điểm). Nối MO cắt cung nhỏ AB tại N
a) Cho OM = 2R. Tính AON và số đo A NB
b) Biết AMB = 36o . Tính góc ở tâm hợp bởi hai bán kính OA, OB.
Bài 8: Cho tam giác ABC cân tại A. Vẽ đường tròn tâm O, đường kính BC. Đường tròn (O)
cắt AB, AC tương ứng tại M và N.
a) Chứng minh các cung nhỏ BM và CN có số đo bằng nhau
b) Tính MON , nếu BAC =40o
Bài 9: Trên cung nhỏ AB của đường tròn (O), cho hai điểm C, D sao cho cung AB được
chia thành ba cung bằng nhau, tức là AC =CD =DB . Bán kính OC và OD cắt dây AB lần
lượt tại E và F.
a) Hãy so sánh các đoạn thẳng AE, EF và FB
b) Chứng minh rằng AB // CD
Cả hình giúp mình nhé! mơn trc nàhihi

1

Bài 7:

a: Xét ΔOAM vuông tại A có 

\(\cos\widehat{AOM}=\dfrac{OA}{OM}=\dfrac{1}{2}\)

nên \(\widehat{AOM}=60^0\)

b: Xét tứ giác OAMB có 

\(\widehat{OAM}+\widehat{OBM}=180^0\)

Do đó: OAMB là tứ giác nội tiếp

Suy ra: \(\widehat{AOB}=180^0-36^0=144^0\)

17 tháng 10 2018

a, Sử dụng tỉ số lượng giác trong tam giác vuông ∆AMO ta tính được  A O M ^ = 60 0

b, Tính được  A O B ^ = 120 0 , sđ  A B C ⏜ = 120 0

c, Ta có  A O C ⏜ = B O C ⏜ => A C ⏜ = B C ⏜