Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+...+\(\dfrac{1}{49.51}\)
=\(\dfrac{2}{2}\).(\(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+...+\(\dfrac{1}{49.51}\))
=\(\dfrac{1}{2}\).(\(\dfrac{2}{1.3}\)+\(\dfrac{2}{3.5}\)+\(\dfrac{2}{5.7}\)+...+\(\dfrac{2}{49.50}\))
=\(\dfrac{1}{2}\).(1-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{49}-\dfrac{1}{51}\))
=\(\dfrac{1}{2}\).(\(1-\dfrac{1}{51}\))
=\(\dfrac{1}{2}\).\(\dfrac{50}{51}\)
=\(\dfrac{25}{51}\)
Ta có: \(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{49\cdot51}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{49\cdot51}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{49}-\dfrac{1}{51}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{51}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{50}{51}=\dfrac{25}{51}\)
\(1,\\ a,=3^{5+7}=3^{12}\\ b,=2^{10-3}=2^7\\ c,=2^2\cdot5^3\cdot2\cdot5=2^3\cdot5^4\\ d,=\left(3^5\cdot7^2\cdot7^2\right):\left(3^3\cdot7^3\right)=3^2\cdot7\\ 2,\\ a,=16\cdot5-2^4:2^2=80-2^2=76\\ b,=3\left(5^2+3\cdot4\right)=3\left(25+12\right)=3\cdot37=111\\ c,=49\cdot4+4\cdot6=4\left(49+6\right)=4\cdot55=220\\ d,=4^2\left(19-15\right)=4^2\cdot4=4^3=64\\ e,=249-200+36=85\\ f,=24-18:9+30=54-2=52\\ g,=36-12+48=72\\ h,=36-12+21=45\)
a: =>x=13/52+8/52=21/52
b: =>x=1/36-27/36=-26/36=-13/18
c: =>x=24/60+15/60-20/60=19/60
d: =>x/15=9/15-10/15=-1/15
=>x=-1
a, x = 21/52 ; b x = -13/18
c, x = 19/60 ; d, x = -1