Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
$5(2-x)^2+xy-2y=5(x-2)^2+y(x-2)=(x-2)[5(x-2)+y]=(x-2)(5x+y-10)$
b)
$3a^2x-3a^2y+abx-aby=3a^2(x-y)+ab(x-y)$
$=(x-y)(3a^2+ab)=a(x-y)(3a+b)$
c)
$x(x-y)^3-y(y-x)^2-y^2(x-y)=x(x-y)^3-y(x-y)^2-y^2(x-y)$
$=(x-y)[x(x-y)^2-y(x-y)-y^2]$
$=(x-y)(x^3-2x^2y+xy^2-xy)$
$=x(x-y)(x^2-2xy+y^2-y)$
d)
$2ax^3+6ax^2+6ax+18a$
$=2a(x^3+3x^2+3x+9)
$=2a[x^2(x+3)+3(x+3)]$
$=2a(x+3)(x^2+3)$
e) f) Biểu thức không phân tích được thành nhân tử. Bạn xem lại đề.
\(a.10x\left(x-y\right)-6y\left(y-x\right)\\ =10x\left(x-y\right)+6y\left(x-y\right)\\ =\left(10x-6y\right)\left(x-y\right)\\ =2\left(5x-3y\right)\left(x-y\right)\)
\(b.14x^2y-21xy^2+28x^3y^2\\ =7xy\left(x-y+xy\right)\)
\(c.x^2-4+\left(x-2\right)^2\\ =\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2\\ =\left(x-2\right)\left(x+2+x-2\right)\\ =2x\left(x-2\right)\)
\(d.\left(x+1\right)^2-25\\ =\left(x+1-5\right)\left(x+1+5\right)=\left(x-4\right)\left(x+6\right)\)
a: \(=\dfrac{27a^6b^3\cdot a^2b^6}{a^8b^8}=27b\)
b: \(=3y^2-5x^2y^3-2y^2+3x^2y^3\)
\(=y^2-2x^2y^3\)
c: \(=6x-y+2x^2+3y-2x^2+x\)
\(=7x+2y\)
d: \(=x-y+2y^2-6xy+\dfrac{10x^2}{y}\)
a: \(=3y^2-5x^2y^3-2y^2+3x^2y^3=y^2-2x^2y^3\)
b: \(=6x-y+2x^2+3y^2-2x^2+x=7x-y+3y^2\)
c: \(=x-y+4y^2-6xy+\dfrac{10x^2}{y}\)
\(a.\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)y^2\)
\(=3y^2-5x^2y^3-2y^2+3x^2y^3\)
\(=y^2-2x^2y^3\)
\(b.\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)
\(=6x-y+2x^2+3y-2+x\)
\(=2x^2+7x+2y-2\)
\(c.\left(x^2-xy\right):x+\left(6x^2y^5-9x^3y^4+15x^4y^3\right):\dfrac{3}{2}x^2y^3\)
\(=x-y+4y^2-6xy+10x^2\)
ko ai thèm trả lời đâu cu
a) \(4x^2-6x=2x\left(2x-3\right)\)
b) \(9x^4y^3+3x^2y^4=3x^2y^3\left(3x^2+y\right)\)
c) \(3\left(x-y\right)-5x\left(y-x\right)=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(5x+3\right)\left(x-y\right)\)
d) \(x^3-2x^2+5x=x\left(x^2-2x+5\right)\)
e) \(5\left(x+3y\right)-15x\left(x+3y\right)=\left(5-15x\right)\left(x+3y\right)\)
\(=5\left(1-3x\right)\left(x+3y\right)\)
f) \(2x^2\left(x+1\right)-4\left(x+1\right)=\left(2x^2-4\right)\left(x+1\right)\)
\(=\left(\sqrt{2}x-2\right)\left(\sqrt{2}x+2\right)\left(x+1\right)\)