K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

CT
23 tháng 11 2022

A - B = A + (-B) = (-B) + A = - (B - A)

ko phải là A - B = - B - A đâu em nhé

17 tháng 10 2018

ta có: a3 + b3 + c3 - 3abc 

= a3 + 3a2b + 3ab2 + b3 + c3 - 3abc - 3a2b - 3ab2

= (a+b)3 + c3 - 3ab.(c+a+b)

= (a+b+c).[(a+b)2 - (a+b).c + c2 ] - 3ab.(a+b+c)

= (a+b+c).[ a2 + 2ab + b2 - ac - bc + c2 ] - 3ab.(a+b+c)

= (a+b+c).[a2 - 2ab + b2 -ac-bc + c2 - 3ab]

= (a+b+c).(a2 + b2 + c2 - ab -ac-bc)

mà a + b + c = 0

=> a3 + b3 + c3 - 3abc = 0

=> đpcm

17 tháng 10 2018

Có:

a+b+c=0 => c=-(a+b) (1) 
Thay (1) vao a3+b3+c3ta có: 
a3+b3+[-(a+b)]3=3ab[-(a+b)] 
<=>a3+b3-(a+b)=-3ab(a+b) 
<=> a3+ b3- a3 -3a2b- 3ab2- b3= -3a2b- 3ab2 
<=> 0= 0 
vậy ta có đpcm.

1 tháng 11 2018

HELPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

1 tháng 11 2018

óc người ak

5 tháng 8 2020

\(a^2+b^2+c^2-ab-bc-ca\ge0\)

\(< =>2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(< =>\left(a^2+b^2-2ab\right)+\left(b^2+c^2-2bc\right)+\left(c^2+a^2-2ca\right)\ge0\)

\(< =>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)*đúng*

Vậy ta có điều phải chứng mịnh

5 tháng 8 2020

\(a^2+b^2+c^2-ab-ac-bc\ge0\)(*)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)( Đúng )

Vậy (*) đúng

=> đpcm

Dấu " = " xảy ra <=> a = b = c 

7 tháng 7 2018

ABCDEa  ) BEDC là hình thang cân 

b ) Ta có : 2ABDˆ=DBCˆ=EBDˆ2ABD^=DBC^=EBD^

⇒ED=BE=CD(Q.E.D)⇒ED=BE=CD(Q.E.D)

c ) Ta có : Aˆ=500⇒Bˆ=Cˆ=650A^=500⇒B^=C^=650

⇒BEDˆ=CEDˆ=1150(Q.E.D)⇒BED^=CED^=1150(Q.E.D)

 Đúng 3  Bình luận 3 Erza Scarlet đã chọn câu trả lời này.  Báo cáo sai phạm

23 tháng 2 2019

mn kb nha!!

23 tháng 2 2019

Mẹo ???