K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2017

dùng dãy tỉ số bàng nhau ấy ngu vậy

30 tháng 7 2017

không nên nói tục

20 tháng 6 2017

Ta có : \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)

            \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)

Do đó : \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Ta có : \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{138}{46}=3\)

Nên : \(\frac{x}{10}=3\Rightarrow x=30\)

           \(\frac{y}{15}=3\Rightarrow y=45\)

           \(\frac{z}{21}=3\Rightarrow z=63\)

Vậy x = 30 ; y = 45 ; z = 63

11 tháng 9 2016

Câu hỏi của Đỗ Mai Huệ - Toán lớp 7 - Học toán với OnlineMath

3 tháng 2 2017

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{\frac{1}{10}}\) =\(\frac{y}{\frac{1}{15}}\)=\(\frac{z}{\frac{1}{21}}\)=\(\frac{3.x}{\frac{3}{10}}\)=\(\frac{7.y}{\frac{7}{15}}\)=\(\frac{5.z}{\frac{5}{21}}\)=\(\frac{3.x-7.y+5.z}{\frac{1}{14}}\)=\(\frac{30}{\frac{1}{14}}\)=420

=>\(\hept{\begin{cases}10.x=420\\15.y=420\\21.z=420\end{cases}}\)=>\(\hept{\begin{cases}x=42\\y=28\\z=20\end{cases}}\)

TK mình nhé 

26 tháng 7 2017

a) Ta có  : \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\) (1)  

                \(\frac{x}{6}=\frac{y}{5}\Rightarrow\frac{x}{12}=\frac{y}{10}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{10}=\frac{x}{8}-\frac{2y}{24}+\frac{z}{10}=\frac{x-2y+z}{8-24+10}=\frac{27}{-6}=\frac{9}{-2}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{x}{8}=\frac{9}{-2}\Rightarrow x=-36\\\frac{y}{12}=\frac{9}{-2}\Rightarrow y=-54\\\frac{z}{10}=\frac{9}{-2}\Rightarrow z=-45\end{cases}}\)

Vậy ....

b) Ta có : \(5x=9y\Rightarrow x=\frac{9y}{5}\)

Thay \(x=\frac{9y}{5}\)vào biểu thức \(2x-3y=30\);ta được : 

\(\frac{2.9y}{5}-3y=30\Rightarrow18y-15y=150\Rightarrow3y=150\Rightarrow y=50\)

Với \(y=50\Rightarrow x=\frac{9.50}{5}=90\)

Vậy .....

c) Ta có : \(x\div y\div z=3\div4\div5\)

\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2-2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4\)

Do đó : \(\hept{\begin{cases}\frac{x}{3}=4\Rightarrow x=12\\\frac{y}{4}=4\Rightarrow y=16\\\frac{z}{5}=4\Rightarrow z=20\end{cases}}\)

Vậy ... 

d) Ta có  : \(2x=3y\Rightarrow x=\frac{3y}{2}\left(1\right)\)

                \(5y=7z\Rightarrow z=\frac{5y}{7}\left(2\right)\)

Thay (1) và (2) vào biểu thức \(3x-7y+5z=-30\);ta được : 

\(\frac{3.3y}{2}-7y+\frac{5.5y}{7}=-30\)

\(\Leftrightarrow63y-98y+50y=-420\)

\(\Leftrightarrow15y=-420\Rightarrow y=-28\)

Với \(y=-28\Rightarrow x=\frac{3.-28}{2}=-42;z=\frac{5.-28}{7}=-20\)

e) Ta có : \(3x=7y\Rightarrow\frac{x}{7}=\frac{y}{3}\)

 \(\Rightarrow x.y=84\Rightarrow3k.7k=84\Rightarrow21k^2=84\Rightarrow k^2=4\Rightarrow\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)

Với \(k=2\Rightarrow\frac{x}{7}=2\Rightarrow x=14;\frac{y}{3}=2\Rightarrow y=6\)

Với \(k=-2\Rightarrow\frac{x}{7}=-2\Rightarrow x=-14;\frac{y}{3}=-2\Rightarrow y=-6\)

Vậy ...

26 tháng 7 2017

a) ta có:

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{6}\)

\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{5}\)

\(\frac{y}{6}=\frac{2y}{12}\)

 \(\Rightarrow\frac{x}{4}=\frac{2y}{12}=\frac{z}{5}\) (1)

áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

\(\frac{x}{4}=\frac{2y}{12}=\frac{z}{5}=\frac{x-2y+z}{4-12+5}=\frac{27}{-3}=-9\)        (2)

từ (1) và (2) suy ra:

\(\frac{x}{4}=-9\Rightarrow x=-9.4=-36\)

..................................y;z bn tự tính ha!^^

b) ta có:

\(5x=9y\Rightarrow\frac{x}{9}=\frac{y}{5}\)

\(\frac{x}{9}=\frac{2x}{18};\frac{y}{5}=\frac{3y}{15}\)

thui làm đến bước này thì bn tự làm nốt nha! làm câu d cũng tương  tự lun! (câu c mk ko pik làm đâu!^^)

e) 

ta có:

3x=7y \(\Rightarrow\frac{x}{7}=\frac{y}{3}\)

đặt \(\frac{x}{7}=\frac{y}{3}=k\left(k\in Z\right)\Rightarrow\hept{\begin{cases}x=7k\\y=3k\end{cases}}\)

vì xy = 84 nên :   7k.3k = \(84\)

                      \(\Rightarrow21k^2=84\)

                      \(\Rightarrow k^2=4=2^2=\left(-2\right)^2\)

với k = 2 thì x =........... ; y=................

với k=-2 thì x=........ ; y=.................... 

ự làm nốt ha!the end!^^

                 

1 tháng 10 2016

a/ \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) ; Suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\) hay \(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)

Suy ra : x = 2.6 = 12

y = 2.4 = 8

z = 2.5 = 10

b,c,d tương tự

e/ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) ; \(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)

Tới đây bạn làm tương tự a,b,c,d

f tương tự.

g/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)

Bạn áp dụng dãy tỉ số bằng nhau là ra.

h/ Áp dụng dãy tỉ số bằng nhau : 

\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)

Từ đó lại suy ra \(\begin{cases}12x=15y\\20z=12x\\15y=20z\end{cases}\)

Rút ra tỉ số và áp dụng dãy tỉ số bằng nhau.

 

 

1 tháng 10 2016

/vip/tranthimyduyen

4 tháng 8 2020

a) Ta có : 2x = 3y = 5z

=> \(\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\)

=> \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-y-z}{15-10-6}=\frac{-33}{-1}=33\)(dãy tỉ số bằng nhau)

=> \(\hept{\begin{cases}x=33.15=495\\y=33.10=330\\z=33.6=198\end{cases}}\)

b) Ta có 10x = 15y = 6z

=> \(\frac{10x}{30}=\frac{15y}{30}=\frac{6z}{30}\)

=> \(\frac{x}{3}=\frac{y}{2}=\frac{z}{5}\)

=> \(\frac{10x}{30}=\frac{5y}{10}=\frac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

\(\frac{x}{3}=\frac{y}{2}=\frac{z}{5}=\frac{10x}{30}=\frac{5y}{10}=\frac{z}{5}=\frac{10x-5y+z}{30-10+5}=\frac{-33}{25}=-1.32\)

=> \(\hept{\begin{cases}x=-3,96\\y=-2,64\\z=-6,6\end{cases}}\)

c) Ta có \(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\)

=> \(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)

=> \(\hept{\begin{cases}x=\pm15\\y=\pm21\\z=\pm9\end{cases}}\)

Vì  \(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\)=> x ; y ; z cùng dấu

=> Các cặp x;y;z thỏa mãn là (15;21;9) ; (-15;-21;-9)

4 tháng 8 2020

a) \(\hept{\begin{cases}2x=3y=5z\\x-y-z=23\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\\x-y-z=23\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x-y-z}{\frac{1}{2}-\frac{1}{3}-\frac{1}{5}}=\frac{23}{-\frac{1}{30}}=-690\)

\(\hept{\begin{cases}\frac{x}{\frac{1}{2}}=-690\\\frac{y}{\frac{1}{3}}=-690\\\frac{z}{\frac{1}{5}}=-690\end{cases}}\Rightarrow\hept{\begin{cases}x=-345\\y=-230\\z=-138\end{cases}}\)

b) \(\hept{\begin{cases}10x=15y=6z\\10x-5y+z=-33\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{10}}=\frac{y}{\frac{1}{15}}=\frac{z}{\frac{1}{6}}\\10x-5y+z=-33\end{cases}}\Rightarrow\hept{\begin{cases}\frac{10x}{1}=\frac{5y}{\frac{1}{3}}=\frac{z}{\frac{1}{6}}\\10x-5y+z=-33\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{10x}{1}=\frac{5y}{\frac{1}{3}}=\frac{z}{\frac{1}{6}}=\frac{10x-5y+z}{1-\frac{1}{3}+\frac{1}{6}}=\frac{-33}{\frac{5}{6}}=-\frac{198}{5}\)

\(\hept{\begin{cases}\frac{10x}{1}=-\frac{198}{5}\\\frac{5y}{\frac{1}{3}}=-\frac{198}{5}\\\frac{z}{\frac{1}{6}}=-\frac{198}{5}\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{99}{25}\\y=-\frac{66}{25}\\z=-\frac{33}{5}\end{cases}}\)

c) \(\hept{\begin{cases}\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\\x^2+y^2-z^2=585\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x^2}{5^2}=\frac{y^2}{7^2}=\frac{z^2}{3^2}\\x^2+y^2-z^2=585\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{5^2}=\frac{y^2}{7^2}=\frac{z^2}{3^2}=\frac{x^2+y^2-z^2}{5^2+7^2-3^2}=\frac{585}{65}=9\)

\(\hept{\begin{cases}\frac{x^2}{5^2}=9\\\frac{y^2}{7^2}=9\\\frac{z^2}{3^2}=9\end{cases}}\Rightarrow\hept{\begin{cases}x=\pm15\\y=\pm21\\z=\pm9\end{cases}}\)

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\)cùng dấu

=> ( x ; y ; z ) = ( 15 ; 21 ; 9 ) hoặc ( x ; y ; z ) = ( -15 ; -21 ; -9 )

11 tháng 7 2019

\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)

\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)

\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chát dãy tỉ số = nhau ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)

\(\frac{y}{15}=2\Rightarrow y=30\)

\(\frac{z}{21}=3\Rightarrow z=63\)

11 tháng 7 2019

b, Tự làm

c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)

\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)

\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)

\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)

\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)

\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)

\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)

\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)

\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)

Vậy \((x,y)\in(6,15);(-6,-15)\)