K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2018

Rút gọn  \(A=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\left(ĐKXĐ:x\ne2;x\ne3\right)\)

\(\Rightarrow A=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}-\frac{1}{x-2}\)

         \(=\frac{\left(x+2\right)\left(x-2\right)-5-\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)

         \(=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}=\frac{x^2+3x-4x-12}{\left(x+3\right)\left(x-2\right)}=\frac{x.\left(x+3\right)-4.\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\frac{\left(x+3\right)\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}\)

          \(=\frac{x-4}{x-2}\)

b) Để A > 0 <=> x-4/x-2 > 0

                  <=> x-4>0 <=>x>4

c) Ta có: x-4/x-2 = x-2-2/x-2 = 1-2/x-2

Để A nguyên dương <=> 2 chia hết cho x-2

<=> x-2 thuộc Ư(2) = {-2;2;-1;1}

giải như bài lớp 6 bình thương (loại những giá trị giống ĐKXĐ)

3 tháng 8 2018

cảm ơn nạ rất rất rất....nhìu. Sư phụ hãy nhận của đồ đệ 1 lạy

29 tháng 6 2017

a.ĐKXĐ \(\hept{\begin{cases}x\ne-3\\x\ne2\end{cases}}\)

A=\(\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{1}{x-2}\)

=\(\frac{\left(x+2\right)\left(x-2\right)-5-\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}=\frac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)

=\(\frac{x-4}{x-2}\)

b. Để A >0  thì \(\frac{x-4}{x-2}\) >0 \(\Rightarrow\orbr{\begin{cases}x< 2\\x>4\end{cases}}\)

Kết hợp ĐK thì \(\orbr{\begin{cases}x< 2,x\ne-3\\x>4\end{cases}}\)

c. \(A=\frac{x-4}{x-2}=1+\frac{-2}{x-2}\)

Để A nguyên thì \(x-2\inƯ\left(-2\right)=\left\{-2;-1;1;2\right\}\)

\(\Rightarrow x\in\left\{0,1,3,4\right\}\)

Khi thay vào A, để A dương thì \(x\in\left\{0;1\right\}\)

Vậy để A nguyên dương thì \(x\in\left\{0;1\right\}\)

29 tháng 6 2017

Câu c, có thể nói kết hợp với điều kiện giải được trong câu b, ta tìm được \(x\in\left\{0;1\right\}\)

3 tháng 8 2018

Bạn cần câu nào?

3 tháng 8 2018

làm đc câu nào hay câu đây, càng nhiều càng tốt

cảm ơn nha

26 tháng 6 2018

ĐKXĐ: \(x\ne0;x\ne\pm2\)

a, \(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(=\left[\frac{3x^2}{3x\left(x-2\right)\left(x+2\right)}-\frac{6x\left(x+2\right)}{3x\left(x-2\right)\left(x+2\right)}+\frac{3x\left(x-2\right)}{3x\left(x-2\right)\left(x+2\right)}\right]:\left[\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right]\)

\(=\frac{3x^2-6x^2-12x+3x^2-6x}{3x\left(x-2\right)\left(x+2\right)}:\frac{x^2-4+10-x^2}{x+2}\)

\(=\frac{-18x}{3x\left(x-2\right)\left(x+2\right)}\cdot\frac{x+2}{6}\)

\(=\frac{-3x}{3x\left(x-2\right)}=\frac{-1}{x-2}\)

b, Ta có: \(\left|x\right|=\frac{1}{2}\Rightarrow x=\pm\frac{1}{2}\)

Với \(x=\frac{1}{2}\) thì \(A=\frac{-1}{\frac{1}{2}-2}=\frac{-1}{\frac{-3}{2}}=\frac{2}{3}\)

Với \(x=\frac{-1}{2}\)thì \(A=\frac{-1}{\frac{-1}{2}-2}=\frac{-1}{\frac{-5}{2}}=\frac{2}{5}\)

c, Để A=2 <=> \(\frac{-1}{x-2}=2\Leftrightarrow-1=2x-4\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)

Vậy x=3/2 thì A=2

d, Để A<0 <=> \(\frac{-1}{x-2}< 0\Leftrightarrow x-2>0\Leftrightarrow x>2\)

Vậy với x>2 thì A<0

e, Để A thuộc Z <=> x-2 thuộc Ư(-1)={1;-1}

Ta có: x-2=1 => x=3 (t/m)

          x-2=-1 => x=1 (t/m)

Vậy x thuộc {3;1} thì A thuộc Z

26 tháng 6 2018

a)  \(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)(ĐKXĐ: x khác 0; + 2)

\(A=\left(\frac{x^2}{x\left(x^2-4\right)}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right)\)

\(A=\left(\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{2x\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}\right):\frac{6}{x+2}\)

\(A=\frac{-6x}{x\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}=\frac{-x}{x\left(x-2\right)}=\frac{1}{2-x}.\)

Vậy \(A=\frac{1}{2-x}.\)

b) \(\left|x\right|=\frac{1}{2}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\). Nếu \(x=\frac{1}{2}\)thì \(A=\frac{1}{2-\frac{1}{2}}=\frac{2}{3}.\)

Nếu \(x=-\frac{1}{2}\)thì \(A=\frac{1}{2+\frac{1}{2}}=\frac{2}{5}.\)Vậy ...

c) Để A=2 thì \(\frac{1}{2-x}=2\Rightarrow4-2x=1\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}.\)Vậy ...

d) Để A<0 thì \(\frac{1}{2-x}< 0\Rightarrow2-x< 0\Leftrightarrow x>2.\)Vậy ...

e) Để A thuộc Z thì \(\frac{1}{2-x}\in Z\Rightarrow1⋮2-x\). Mà 2-x thuộc Z (Do x thuộc Z)

Nên \(2-x\in\left\{1;-1\right\}\Rightarrow x\in\left\{1;3\right\}.\)(t/m ĐKXĐ)

Vậy x=1 hay x=3 thì A nguyên.

3 tháng 8 2018

\(P=\left(\frac{2x}{2x^2-5x+2}-\frac{5}{2x-3}\right):\left(3+\frac{2}{1-x}\right) \)(dk x khac 3/2 ; x khac 1)

 
\(P=\left(\frac{2x}{\left(2x-3\right)\left(x-1\right)}-\frac{5\left(x-1\right)}{\left(2x+3\right)\left(x-1\right)}\right):\left(\frac{3\left(x-1\right)}{x-1}-\frac{2}{x-1}\right)\)

\(P=\frac{2x-5x+5}{\left(2x-3\right)\left(x-1\right)}:\frac{3x-3-2}{x-1}\)

\(P=\frac{-\left(3x-5\right)}{\left(2x-3\right)\left(x-1\right)}\cdot\frac{x-1}{3x-5}\)

\(P=\frac{-1}{2x-3}\)

b) TC: \(|2x-1|=3\)

TH1) \(|2x-1|=2x-1\)khi \(x\ge\frac{1}{2}\)

2x-1=3 suy ra x=2 ( thoa dk)

TH2) \(|2x-1|=-2x+1\)khi \(x< \frac{1}{2}\)

-2x+1=3 suy ra x=-1 ( thoa dk)

khi x= 2 thi P=-1 

khi x= -1 thi P=1/5

c) de P thuoc Z thi \(-\frac{1}{2x-3}\)thuoc Z 

suy ra \(\frac{1}{3-2x}\)thuoc Z
suy ra 3-2x thuoc \(Ư\left(1\right)\in\left\{\pm1\right\}\)

khi 3-2x=1 thi x= 1 (ko thoa dk x khac 1)

khi 3-2x=-1 thi x=2(thoa dk)

vay x=2 thi P thuoc Z

d) giai tg tu cau c

5 tháng 8 2018

\(a,ĐKXĐ:x\ne0;x\ne1\)

\(A=\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right)\)

\(A=\frac{x^2+x}{\left(x-1\right)^2}:\left[\frac{\left(x+1\right)\left(x-1\right)}{x\left(x-1\right)}+\frac{1}{x\left(x-1\right)}+\frac{2-x^2}{x^2-x}\right]\)

\(A=\frac{x^2+x}{\left(x-1\right)^2}:\left(\frac{x^2-1+1+2-x^2}{x^2-x}\right)\)

\(A=\frac{x^2+x}{\left(x-1\right)^2}:\frac{2}{x\left(x-1\right)}\)

\(A=\frac{x\left(x+1\right)}{\left(x-1\right)^2}.\frac{x\left(x-1\right)}{2}\)

\(A=\frac{x^2\left(x+1\right)}{2\left(x-1\right)}=\frac{x^3+x^2}{2x-2}\)