Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Với : \(x>0;x\ne1\)
\(P=\left(1+\frac{1}{\sqrt{x}-1}\right)\frac{1}{x-\sqrt{x}}=\left(\frac{\sqrt{x}}{\sqrt{x}-1}\right).\sqrt{x}\left(\sqrt{x}-1\right)=x\)
Thay vào ta được : \(P=x=25\)
Bài 2 :
a, Với \(x\ge0;x\ne1\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}=\frac{x+\sqrt{x}-2\sqrt{x}+2-2}{x-1}\)
\(=\frac{x-\sqrt{x}}{x-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)
Thay x = 9 vào A ta được : \(\frac{3}{3+1}=\frac{3}{4}\)
\(A=\left(\frac{2+\sqrt{x}}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{2-\sqrt{x}}-\frac{\sqrt{x}+2}{\sqrt{x}-3}\right)\) \(:\left(2-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
\(A=\left[\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+2}{\sqrt{x}-3}\right]\)
\(:\left[\frac{2\left(\sqrt{x}+1\right)-\sqrt{x}}{\sqrt{x}+1}\right]\)
\(A=\left[\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+2}{\sqrt{x}-3}\right]\)
\(:\left[\frac{2\sqrt{x}+2-\sqrt{x}}{\sqrt{x}+1}\right]\)
\(A=\left[\frac{\sqrt{x}+2+x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\right]\) \(:\left[\frac{\sqrt{x}+2}{\sqrt{x}+1}\right]\)
\(A=\left[\frac{\sqrt{x}+x-7-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]:\frac{\sqrt{x}+2}{\sqrt{x}+1}\)
\(A=\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\frac{\sqrt{x}+2}{\sqrt{x}+1}\)
\(A=\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
Bài 1
a, Với \(x=9\)thì \(A=\frac{3+\sqrt{x}}{\sqrt{x}}=\frac{3}{\sqrt{x}}+1=\frac{3}{3}+1=2\)
b, Để \(A=\frac{5}{2}\)thì \(\frac{3+\sqrt{x}}{\sqrt{x}}=\frac{3}{\sqrt{x}}+1=\frac{5}{2}< =>\frac{3}{\sqrt{x}}=\frac{3}{2}< =>x=4\)
Bài 2
a, \(B=\frac{\sqrt{x}-2}{\sqrt{x}}+\frac{4\sqrt{x}+2}{x+\sqrt{x}}\left(đk:x>0\right)\)
\(=1-\frac{2}{\sqrt{x}}+\frac{4\sqrt{x}+2}{x+\sqrt{x}}=\frac{x+5\sqrt{x}+2}{x+\sqrt{x}}-\frac{2}{\sqrt{x}}\)
\(=\frac{x\sqrt{x}+5x+2\sqrt{x}-2x-2\sqrt{x}}{x\sqrt{x}+x}=\frac{x\sqrt{x}+3x}{x\sqrt{x}+x}\)
\(=1+\frac{2x}{x\left(\sqrt{x}+1\right)}=1+\frac{2}{\sqrt{x}+1}=\frac{\sqrt{x}+3}{\sqrt{x}+1}\)
\(A=\frac{3+\sqrt{x}}{\sqrt{x}}\)Thay x = 9 ta có :
\(VT=\frac{3+\sqrt{9}}{\sqrt{9}}=\frac{3+3}{3}=2\)
Bài ra ta có : \(A=\frac{3+\sqrt{x}}{\sqrt{x}}=\frac{5}{2}\)
\(\Leftrightarrow\frac{3}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}}=\frac{5}{2}\Leftrightarrow\frac{3}{\sqrt{x}}+1=\frac{5}{2}\)
\(\Leftrightarrow\frac{3}{\sqrt{x}}=\frac{3}{2}\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)