K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2016

ai làm được cho 10 tick

9 tháng 1 2016

a,Ta co:\(A=\frac{2005^{2005}+1}{2005^{2006}+1}<\frac{2005^{2005}+1+2004}{2005^{2006}+1+2004}=\frac{2005^{2005}+2005}{2005^{2006}+2005}\)

                 \(=\frac{2005\left(2005^{2004}+1\right)}{2005\left(2005^{2005}+1\right)}=\frac{2005^{2004}+1}{2005^{2005}+1}\) =B                                                                                        Vay A<B    

b,lam tuong tu nhu y a

 

             

             

5 tháng 4 2019

Bài 1:19.C=\(\frac{19^{209}+19}{19^{209}+1}\)=\(\frac{19^{209}+1+18}{19^{209}+1}\)=\(\frac{19^{209}+1}{19^{209}+1}\)+\(\frac{18}{19^{209}+1}\)=1+\(\frac{18}{19^{209}+1}\)19D=\(\frac{19^{210}+19}{19^{210}+1}\)=\(\frac{19^{210}+1+18}{19^{210}+1}\)=\(\frac{19^{210}+1}{19^{210}+1}\)+\(\frac{18}{19^{210}+1}\)=1+\(\frac{18}{19^{210}+1}\).Vì \(\frac{18}{19^{209}+1}\)>\(\frac{18}{19^{210}+1}\)nên 19A>19B\(\Rightarrow\)A>B

5 tháng 4 2019

19D=\(\frac{\left(19^{209}+1\right).19}{19^{210}+1}=\frac{19^{210}+19}{19^{210}+1}=\frac{\left(19^{210}+1\right)+18}{19^{210}+1}=\frac{19^{210}+1}{19^{210}+1}+\frac{18}{19^{210}+1}=1+\frac{18}{19^{210}+1}\)

Vì 19C>19D nên C>D

20 tháng 3 2018

10A=\(\frac{10x\left(10^{2004}+1\right)}{10^{2005}+1}\)

1 tháng 9 2018

15793486/64325+548662%546317787=

2 tháng 5 2015

Bạn vào đay học tham khảo nhé, chắn chắn học xong sẽ biết làm!^^

[Toán nâng cao 6 -7] So sánh lũy thừa ( Tiết 2 ) - YouTube

[Toán nâng cao 6] Dãy phân số viết theo quy luật (Tiết 1 ...

2 tháng 5 2015

Giải:

Giải theo cách Tổng Hiệu:

Do cOb là góc lớn hơn nên có số đo là:

(150 + 20) : 2 = 85 độ

Số góc aOc là:

150 – 85 = 65 độ

23 tháng 3 2018

Ta có:10A=\(\frac{10^{2005}+10}{10^{2005}+1}\)=1+\(\frac{9}{10^{2005}+1}\)

          10B=\(\frac{10^{2006}+10}{10^{2006}+1}\) =1+\(\frac{9}{10^{2006}+1}\) 

Mà:\(\frac{9}{10^{2005}+1}\) >\(\frac{9}{10^{2006}+1}\) 

Vậy:1+\(\frac{9}{10^{2005}+1}\) >1+\(\frac{9}{10^{2006}+1}\)

Vậy:A>B

23 tháng 3 2018

cho

GIAI GIUP MINH DI

A=\(\frac{37^{2018}+5}{37^{2019}+5}\)

B=\(\frac{37^{2018}+1}{37^{2019}+1}\)

Ta có: \(A=\frac{10^{2004}+1}{10^{2005}+1}\)

\(10A=10.\frac{10^{2004}+1}{10^{2005}+1}\)

        \(=\frac{10^{2005}+10}{10^{2005}+1}\)

        \(=\frac{10^{2005}+1+9}{10^{2005}+1}\)

        \(=\frac{10^{2005}+1}{10^{2005}+1}+\frac{9}{10^{2005}+1}\)

        \(=1+\frac{9}{10^{2005}+1}\)

Tương tự ta có: \(B=\frac{10^{2005}+1}{10^{2006}+1}\)

\(10B=10.\frac{10^{2005}+1}{10^{2006}+1}\)

        \(=\frac{10^{2006}+10}{10^{2006}+1}\)

        \(=\frac{10^{2006}+1+9}{10^{2006}+1}\)

        \(=\frac{10^{2006}+1}{10^{2006}+1}+\frac{9}{10^{2006}+1}\)

        \(=1+\frac{9}{10^{2006}+1}\)

\(1+\frac{9}{10^{2005}+1}>1+\frac{9}{10^{2006}+1}\)

(Muốn so sánh 2 phân số cùng tử, phân số nào có mẫu lớn hơn thì nhỏ hơn, phân số nào có mẫu nhỏ hơn thì lớn hơn)

Nên\(A>B\)

25 tháng 3 2016

\(B=\frac{10^{2005}+1}{10^{2006}+1}<\frac{10^{2005}+1+9}{10^{2006}+1+9}=\frac{10^{2005}+10}{10^{2006}+10}=\frac{10\left(10^{2004}+1\right)}{10\left(10^{2005}+1\right)}=\frac{10^{2004}+1}{10^{2005}+1}=A\)

\(\Rightarrow\)B < A