Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1999x2000}{1999x2000+1}=\frac{1999x2000+1-1}{1999x2000+1}=1-\frac{1}{1999x2000+1}\)
\(\frac{2000x2001}{2000x2001+1}=\frac{2000x2001+1-1}{2000x2001+1}=1-\frac{1}{2000x2001+1}\)
Nhận thấy: \(\frac{1}{1999x2000+1}>\frac{1}{2000x2001+1}\)=> \(1-\frac{1}{1999x2000+1}< 1-\frac{1}{2000x2001+1}\)
=> \(\frac{1999x2000}{1999x2000+1}=\frac{2000x2001}{2000x2001+1}\)
\(\frac{1999x2000}{1999x2000+1}< \frac{2000x2001}{2000x2001+1}\)
A và B khi tính ra sẽ ra số rất lớn ko thể so sánh vì vậy
ta lấy số mũ :
_ A sẽ có số mũ là 2001 và 2002
_ B sẽ có số mũ là 2001 và 2000
A và B sẽ có 2001 = 2001 còn 2002 > 2000
=> A > B
chúc bạn học giỏi
\(B=\frac{1999+2000}{2000+2001}\)
\(B=\frac{1999}{2000+2001}+\frac{2000}{2000+2001}\)
Vì \(\frac{1999}{2000+2001}< \frac{1999}{2000}\) ; \(\frac{2000}{2000+2001}< \frac{2000}{2001}\)
\(\Rightarrow\)\(B=\frac{1999}{2000+2001}+\frac{2000}{2000+2001}\)< \(A=\frac{1999}{2000}+\frac{2000}{2001}\)
\(\Rightarrow\)B < A
Vậy B < A
vì 2 phan số = 1 nên khi cộng với 1 thì = 2 mà 2= 2 nên 2 phân số bằng nhau
\(\frac{-1999}{2000}\)>\(\frac{-1999}{2001}\)>\(\frac{-2000}{2001}\)
\(\frac{x+1}{2001}+\frac{x+2}{200}=\frac{x+3}{1999}+\frac{x+4}{1998}\)
\(\left(\frac{x+1}{2001}+1\right)+\left(\frac{x+2}{2000}+1\right)=\left(\frac{x+3}{1999}+1\right)+\left(\frac{x+4}{1998}+1\right)\)
\(\frac{x+2002}{2001}+\frac{x+2002}{2000}=\frac{x+2002}{1999}+\frac{x+2002}{1998}\)
\(\frac{x+2002}{2001}+\frac{x+2002}{2000}-\frac{x+2002}{1999}-\frac{x+2002}{1998}=0\)
\(\left(x+2002\right).\left(\frac{1}{2001}+\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)
\(\Rightarrow x+2002=0\)
\(\Rightarrow x=0-2002\)
\(\Rightarrow x=-2002\)
Ta có :
\(B=\frac{1999+2000}{2000+2001}=\frac{1999}{2000+2001}+\frac{2000}{2000+2001}\)
VẬY \(\frac{1999}{2000}>\frac{1999}{2000+2001}\)
\(\frac{2000}{2001}>\frac{2000}{2000+2001}\)
\(\Rightarrow\frac{1999}{2000}+\frac{2000}{2001}>\frac{1999+2000}{2000+2001}\)
\(\Rightarrow A>B\)
CHÚC BN HỌC TỐT #
\(B=\frac{1999+2000}{2000+2001}=\frac{1999}{2000+2001}+\frac{2000}{2000+2001}\)
Ta có: \(\frac{1999}{2000}>\frac{1999}{2000+2001}\)
\(\frac{2000}{2001}>\frac{2000}{2000+2001}\)
\(\Rightarrow A>B\)