Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{4}\cdot\frac{2}{6}\cdot\frac{3}{8}\cdot\frac{4}{10}\cdot....\cdot\frac{30}{62}\cdot\frac{31}{64}=2^x\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot.....\cdot\frac{30}{31}\cdot\frac{31}{32}\right)=2^x\)
\(\Leftrightarrow\frac{1}{32}=2^{x+1}\)
Làm nốt.
ko làm được câu này hay câu b ib với tớ nha.khẳng định tối giải.
b) \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=\frac{4^5.\left(1+1+1+1\right)}{3^5.\left(1+1+1\right)}.\frac{6^5.\left(1+1+1+1+1+1\right)}{2^5.\left(1+1\right)}\)
\(=\frac{4^5.4}{3^5.3}.\frac{6^5.6}{2^5.2}=\frac{4^6}{3^6}.\frac{6^6}{2^6}=\frac{2^{12}.2^6.3^6}{3^6.2^6}=2^{12}\)
Ta có: \(2^{12}=\left(2^3\right)^4=8^4\)
Vậy x= 4
a.4^7
b.8^5
c.cho x mk sẻ tính kết quả nhưng tìm xmk ko tính đâu
Câu b) tạm thời ko bít làm =.=
Bài 1 :
\(d)\) \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2x\)
\(\Leftrightarrow\)\(\frac{4^5.4}{3^5.3}.\frac{6^5.6}{2^5.2}=2x\)
\(\Leftrightarrow\)\(\frac{4^6}{3^6}.\frac{6^6}{2^6}=2x\)
\(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{2^6.3^6}{2^6}=2x\)
\(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{3^6}{1}=2x\)
\(\Leftrightarrow\)\(2^{12}=2x\)
\(\Leftrightarrow\)\(x=\frac{2^{12}}{2}\)
\(\Leftrightarrow\)\(x=2^{11}\)
\(\Leftrightarrow\)\(x=2048\)
Vậy \(x=2048\)
Chúc bạn học tốt ~
Bài 1 :
\(a)\) Ta có :
\(4+\frac{x}{7+y}=\frac{4}{7}\)
\(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{4}{7}-4\)
\(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{-24}{7}\)
\(\Leftrightarrow\)\(\frac{x}{-24}=\frac{7+y}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{-24}=\frac{7+y}{7}=\frac{x+7+y}{-24+7}=\frac{22+7}{-17}=\frac{29}{-17}=\frac{-29}{17}\)
Do đó :
\(\frac{x}{-24}=\frac{-29}{17}\)\(\Rightarrow\)\(x=\frac{-29}{17}.\left(-24\right)=\frac{696}{17}\)
\(\frac{7+y}{7}=\frac{-29}{17}\)\(\Rightarrow\)\(y=\frac{-29}{17}.7-7=\frac{-322}{17}\)
Vậy \(x=\frac{696}{17}\) và \(y=\frac{-322}{17}\)
Chúc bạn học tốt ~
b)
\(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}....\frac{30}{62}.\frac{31}{64}=2^x\)
\(\frac{1.2.3.4.....30.31}{4.6.8.10....62.64}=2^x\)
\(\frac{1.2.3.4.5....30.31}{2.2.2.3.2.4.2.5.....2.31.64}=2^x\)
\(\frac{1.2.3.4.5.....30.31}{\left(2.2.2....2.2\right).\left(2.3.4.5....30.31\right).64}=2^x\)
\(2.2.2.2.2.....2.64=2^x\)
\(2^{31}.2^6=2^x\)
\(2^{37}=2^x\)
=> \(x=37\)
Ta có: \(\frac{1}{2.2}.\frac{2}{2.3}.\frac{3}{2.4}.\frac{4}{2.5}.\frac{5}{2.6}.......\frac{30}{2.31}.\frac{31}{64}=4^x\)
\(\frac{1}{2^{30}.64}=4^x\Leftrightarrow4^x.2^{30}.2^6=1\)
\(\Leftrightarrow2^{2x+36}2^0\)
\(\Leftrightarrow2x+36=0\)
\(\Leftrightarrow2x=-36\)
\(\Leftrightarrow x=-18\)
Vậy ........
$4^x.64=1$\(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}.\frac{5}{12}.....\frac{30}{62}.\frac{31}{64}=4^x\)
\(\Leftrightarrow\frac{1}{2.2}.\frac{2}{2.3}.\frac{3}{2.4}.\frac{4}{2.5}.\frac{5}{2.6}.....\frac{30}{2.31}.\frac{31}{2.32}=4^x\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.....\frac{30}{31}.\frac{31}{32}\right)=4^x\)
\(\Leftrightarrow\frac{1}{2}.\frac{1.2.3.4.5.....30.31}{2.3.4.5.6.....31.32}=4^x\)
\(\Leftrightarrow\frac{1}{2}.\frac{1}{32}=4^x\)
\(\Leftrightarrow4^x=\frac{1}{64}\)
\(\Leftrightarrow4^x.64=1\)
\(\Leftrightarrow4^x.4^3=1\Leftrightarrow4^{x+3}=4^0\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
Vậy x = -3
\(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}.\frac{5}{12}.....\frac{30}{62}.\frac{31}{64}=2^x\)
=>\(\frac{1}{2.2}.\frac{2}{2.3}.\frac{3}{2.4}.\frac{4}{2.5}.\frac{5}{2.6}....\frac{30}{2.31}.\frac{31}{2.32}=2^x\)
=>\(\frac{1.2.3.4.5....30.31}{2.2.2.3.2.4.2.5.2.6...2.31.2.32}=2^x\)
=>\(\frac{2.3.4.5...30.31}{2^{31}.32.\left(2.3.4.5...31\right)}=2^x\)
=>\(\frac{1}{2^{31}.2^5}=2^x\)
=>\(\frac{1}{2^{36}}=2^x\)
=> x=36
Vậy x=36
Chúc bn học tốt nhé!
\(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}.\frac{5}{12}.....\frac{30}{62}.\frac{31}{64}\)
\(=\frac{1.2.3.4....30.31}{4.6.8.10.12....62.64}\)
\(=\frac{1.\left(2.3.4.5....30.31\right)}{2.\left(2.3.4....30.31\right).64}\)
\(=\frac{1}{2.64}\)
\(=\frac{1}{128}\)