Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng bđt AM-GM ta có:
\(\frac{a^3}{b\left(c+a\right)}+\frac{b}{2}+\frac{c+a}{4}\ge\frac{3a}{2}\)
\(\frac{b^3}{c\left(a+b\right)}+\frac{c}{2}+\frac{a+b}{4}\ge\frac{3b}{2}\)
\(\frac{c^2}{b+c}+\frac{b+c}{4}\ge c\)
cộng theo vế \(\frac{a^3}{b\left(c+a\right)}+\frac{b^3}{c\left(a+b\right)}+\frac{c^3}{b+c}+\frac{a}{2}+b+c\ge\frac{3a}{2}+\frac{3b}{2}+c\)
hay \(\frac{a^3}{b\left(c+a\right)}+\frac{b^3}{c\left(a+b\right)}+\frac{c^2}{b+c}\ge a+\frac{b}{2}\)
đẳng thức xảy ra khi a=b=c
wow bây giờ lớp 2 học cả cái này cơ đấy mới có 7 tuổi mà học giỏi thế cơ đấy
23/2=23:2
108/3=108:3=36
8404/4=8404:4=2101
89256/5=89256:5
chắc chắn 100% k cho mình nha
a) \(\frac{23}{2}\)= 23 : 2 = 11,5
b)\(\frac{108}{3}\) = 108 : 3 = 36
c)\(\frac{8404}{4}\) = 8404 : 4 = 2101
d)\(\frac{89256}{5}\)= 89256 : 5 = 17851,2
\(A=\frac{1}{1x2}+\frac{1}{2x3}+...+\frac{1}{99.100}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)
\(A=\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
\(A=\frac{10.20+20.90}{100.5+100.5}=\frac{20.\left(10+90\right)}{100.\left(5+5\right)}\)
\(=\frac{20.100}{100.10}=\frac{20}{10}=2\)
\(A=\frac{10.20+20.90}{100.5+100.5}\)=\(\frac{2.1+1.18}{5.1+5.1}=\frac{20}{10}=2\)