Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{38}{-19}=-2\)
Do đó: x=-16; y=-24; z=-30
\(\dfrac{x}{y}=\dfrac{3}{5}\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\)
Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=5k\end{matrix}\right.\)
\(C=\dfrac{5x-y}{2x-3y}=\dfrac{5.3k-5k}{2.3k-3.5k}=\dfrac{15k-5k}{6k-15k}=\dfrac{10k}{-9k}=-\dfrac{10}{9}\)
\(\dfrac{2x+3}{3}=\dfrac{3y-2}{6}=\dfrac{2x+6y-1}{5x}\left(1\right)\)
Từ `2` tỉ số đầu , ta áp dụng t/c của DTSBN , ta đc :
\(\dfrac{2x+3}{3}=\dfrac{3y-2}{6}=\dfrac{2x+3+3y-2}{3+6}=\dfrac{2x+3y+1}{9}\left(2\right)\)
Từ `(1);(2)=>`\(\dfrac{2x+6y-1}{5x}=\dfrac{2x+3y+1}{9}\left(3\right)\)
Từ `(3)` ta xét `2` trường hợp :
+, Nếu `2x+3y+1 \ne 0` thì :
`(3)=>5x=9=>x=9/5`
Thay `x=9/5` vào \(\dfrac{2x+3}{3}=\dfrac{3y-2}{6}\), ta đc :
\(\dfrac{2\cdot\dfrac{9}{5}+3}{3}=\dfrac{3y-2}{6}\\ \Rightarrow\dfrac{\dfrac{18}{5}+3}{3}=\dfrac{3y-2}{6}\\ \Rightarrow\dfrac{11}{5}=\dfrac{3y-2}{6}\\ 3y-2=6\cdot\dfrac{11}{5}\\ 3y-2=\dfrac{66}{5}\\ 3y=\dfrac{76}{5}\\ y=\dfrac{76}{16}\)
+, Nếu `2x+3y+1=0` thì :
`(1)=>` \(\dfrac{2x+3}{3}=\dfrac{3y-2}{6}=0\\ \Rightarrow\left\{{}\begin{matrix}2x+3=0\\3y-2=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=\dfrac{2}{3}\end{matrix}\right.\)
b: 2x=3y nên x/3=y/2
=>x/21=y/14
5x=7z nen x/7=z/5
=>x/21=z/15
=>x/21=y/14=z/15
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{15}=\dfrac{3x-7y+5z}{3\cdot21-7\cdot14+5\cdot15}=\dfrac{30}{40}=\dfrac{3}{4}\)
Do đó: x=63/4; y=21/2; z=45/4
Ta có \(\dfrac{x}{3}=\dfrac{y}{5}=k\Rightarrow x=3k;y=5k\)
Thay vào ta được
\(A=\dfrac{5.9k^2+3.25k^2}{5.9k^2-25k^2}=\dfrac{\left(45+75\right)k^2}{20k^2}=\dfrac{120}{20}=6\)
a, áp dụng t/c dtsbn ta có:
\(\dfrac{x}{-10}=\dfrac{y}{6}=\dfrac{2x-3y}{2.\left(-10\right)-3.6}-\dfrac{76}{-38}=-2\)
\(\dfrac{x}{-10}=-2\Rightarrow x=20\\ \dfrac{y}{6}=-2\Rightarrow y=-12\)
b, áp dụng t/c dtsbn ta có:
\(\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{2x+5y}{2.4+5.5}=\dfrac{66}{33}=2\)
\(\dfrac{x}{4}=2\Rightarrow x=8\\ \dfrac{y}{5}=2\Rightarrow y=10\)
\(a,\dfrac{x}{-10}=\dfrac{y}{6}=\dfrac{2x-3y}{-20-18}=\dfrac{76}{-38}=-2\\ \Rightarrow\left\{{}\begin{matrix}x=20\\y=-12\end{matrix}\right.\\ b,\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{2x+5y}{8+25}=\dfrac{66}{33}=2\\ \Rightarrow\left\{{}\begin{matrix}x=8\\y=10\end{matrix}\right.\)
7) vì \(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)và x-y+z=36
Nên theo tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)=\(\dfrac{x-y+z}{5-6+7}\)=\(\dfrac{36}{6}\)=6
\(\Rightarrow\)x=6.5=30
y=6.6=36
z=6.7=42
vậy x=30,y=36,z=42
* Đặt \(\dfrac{2x}{5}=\dfrac{-3y}{4}=k\Rightarrow2x=5k\Rightarrow x=\dfrac{5k}{2}\)
và\(-3y=4k\Rightarrow y=\dfrac{-4k}{3}\)
a) \(A=\dfrac{5x+3y}{6x-2y}\)
thay \(x=\dfrac{5k}{2}\)và \(y=\dfrac{-4k}{3}\), ta được
\(A=\dfrac{5.\dfrac{5k}{2}+3.\dfrac{-4k}{3}}{6.\dfrac{5k}{2}-2.\dfrac{-4k}{3}}=\dfrac{\dfrac{25k}{2}-4k}{15k+\dfrac{8k}{3}}=\dfrac{51}{106}\)
Bài B tương tự
Đặt:
\(\dfrac{2x}{5}=\dfrac{-3y}{4}=k\)
\(\Rightarrow\left\{{}\begin{matrix}2x=5k\Rightarrow x=2,5k\\-3y=4k\Rightarrow y=\dfrac{4}{-3}k\end{matrix}\right.\)
\(\Rightarrow A=\dfrac{5x+3y}{6x-2y}\)
\(A=\dfrac{5.2,5k+3.\dfrac{4}{-3}k}{6.2,5k-2.\dfrac{4}{-3}k}\)
\(A=\dfrac{12,5k+-4k}{15k-\dfrac{8}{-3}k}\)
\(A=\dfrac{8,5k}{\dfrac{53}{3}k}\)
b Tương tự
\(\dfrac{x}{y}=\dfrac{6}{5}\Rightarrow x=\dfrac{6}{5}y\)
\(\Rightarrow A=\dfrac{5.\left(\dfrac{6}{5}y\right)-3y}{2.\left(\dfrac{6}{5}y\right)-y}=\dfrac{3y}{\dfrac{7y}{5}}=\dfrac{15}{7}\)
\(\dfrac{_{ }x}{^{ }y}\) = \(\dfrac{6}{5}\) \(\Rightarrow\) \(_x\) =\(\dfrac{6}{5}\)\(y\)
\(^{ }\Rightarrow A\) =\(^{\dfrac{^{5.\dfrac{ }{ }}}{2.}(\dfrac{6}{5}}y)-3y_{_{_{_{_{_{_{_{ }}}}}}}}\)\(=\dfrac{3y}{7y}=\dfrac{15}{7}\)