K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2017

Câu a)

Em mới hc lớp 7 nên chỉ chứng minh cái phần dấu bằng xảy ra khi nào thui. Ko biết có đúng ko

Theo đề bài Ta có

\(\left(ac+bd\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(\Leftrightarrow\left(ac+bd\right)^2=\left(a^2+b^2\right)^2=\left(c^2+d^2\right)^2\)

Suy ra \(ac=a^2,bd=b^2,ac=b^2\)

Suy ra \(a=b=c=d\)

Vậy dấu bằng xảy ra khi \(a=b=c=d\)

21 tháng 11 2017

ukm nhưng anh cần câu b

25 tháng 7 2015

\(\left|ab+cd\right|\le\sqrt{\left(a^2+c^2\right)\left(b^2+d^2\right)}\Leftrightarrow\left|ab+cd\right|^2\le\left(a^2+c^2\right)\left(b^2+d^2\right)\)

Áp dụng bất đẳng thức bunhiacopxki ta suy ra:

 Dấu "=" xảy ra <=> ad=bc

NV
9 tháng 4 2021

\(M=\dfrac{\left(ab\right)^2}{abc^2\left(a+b\right)}+\dfrac{\left(ac\right)^2}{acb^2\left(a+c\right)}+\dfrac{\left(bc\right)^2}{a^2bc\left(b+c\right)}\)

\(M\ge\dfrac{\left(ab+bc+ca\right)^2}{2abc\left(ab+bc+ca\right)}=\dfrac{ab+bc+ca}{2abc}=\dfrac{\left(a+b+c\right)\left(ab+bc+ca\right)}{6abc}\ge\dfrac{9abc}{6abc}=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

24 tháng 7 2019

1. \(\left|ab+cd\right|\le\sqrt{\left(a^2+c^2\right)\left(b^2+d^2\right)}\)

\(\Leftrightarrow\left(ab+cd\right)^2\le\left(a^2+c^2\right)\left(b^2+d^2\right)\)

\(\Leftrightarrow a^2b^2+2abcd+c^2d^2\le a^2b^2+a^2d^2+c^2b^2+c^2d^2\)

\(\Leftrightarrow a^2d^2-2abcd+c^2b^2\ge0\)

\(\Leftrightarrow\left(ad-bc\right)^2\ge0\)( luôn đúng )

Dấu đẳng thức xảy ra \(\Leftrightarrow ad-bc=0\Leftrightarrow ad=bc\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)

24 tháng 7 2019

còn câu 2 bn

27 tháng 8 2021

a/ \(A=\frac{cot^2a-cos^2a}{cot^2a}-\frac{sina.cosa}{cota}\)

\(=\frac{\frac{cos^2a}{sin^2a}-cos^2a}{\frac{cos^2a}{sin^2a}}-\frac{sina.cosa}{\frac{cosa}{sina}}\)

\(=\left(1-sin^2a\right)-sin^2a=1\)

27 tháng 8 2021

b/ \(B=\left(cosa-sina\right)^2+\left(cosa+sina\right)^2+cos^4a-sin^4a-2cos^2a\)

\(=cos^2a-2cosa.sina+sin^2a+cos^2a+2cosa.sina+sin^2a+\left(cos^2a+sin^2a\right)\left(cos^2a-sin^2a\right)-2cos^2a\)

\(=2+\left(cos^2a-sin^2a\right)-2cos^2a\)

\(=2-sin^2a-cos^2a=2-1=1\)

11 tháng 11 2015

Ta có: \(M=\sin^2B+\cos^2B+\sin^2B+\cos^2B-2\sin B\cos B+2\sin B\cos B=2\left(\sin^2B+\cos^2B\right)=2.1=2\)

6 tháng 6 2019

a) \(A=\left(\sqrt{a}+\sqrt{b}\right)^2\le\left(\sqrt{a}+\sqrt{b}\right)^2+\left(\sqrt{a}-\sqrt{b}\right)^2=2a+2b\le2\)

Vậy GTLN của A là 2 \(\Leftrightarrow\hept{\begin{cases}\sqrt{a}=\sqrt{b}\\a+b=1\end{cases}\Leftrightarrow a=b=\frac{1}{2}}\)

b) Ta có : \(\left(\sqrt{a}+\sqrt{b}\right)^4\le\left(\sqrt{a}+\sqrt{b}\right)^4+\left(\sqrt{a}-\sqrt{b}\right)^4=2\left(a^2+b^2+6ab\right)\)

Tương tự : \(\left(\sqrt{a}+\sqrt{c}\right)^4\le2\left(a^2+c^2+6ac\right)\)

\(\left(\sqrt{a}+\sqrt{d}\right)^4\le2\left(a^2+d^2+6ad\right)\)

\(\left(\sqrt{b}+\sqrt{c}\right)^4\le2\left(b^2+c^2+6bc\right)\)

\(\left(\sqrt{b}+\sqrt{d}\right)^4\le2\left(b^2+d^2+6bd\right)\)

\(\left(\sqrt{c}+\sqrt{d}\right)^4\le2\left(c^2+d^2+6cd\right)\)

Cộng các vế lại, ta được :

\(B\le6\left(a^2+b^2+c^2+d^2+2ab+2ac+2ad+2bd+2cd+2bc\right)=6\left(a+b+c+d\right)^2\)

\(\Rightarrow B\le6\)

Vậy GTLN của B là 6 \(\Leftrightarrow\hept{\begin{cases}\sqrt{a}=\sqrt{b}=\sqrt{c}=\sqrt{d}\\a+b+c+d=1\end{cases}}\Leftrightarrow a=b=c=d=\frac{1}{4}\)