Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức cauchy:
\(P=\sum\dfrac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}\ge\sum\dfrac{2x^2\sqrt{yz}}{y\sqrt{y}+2z\sqrt{z}}=\sum\dfrac{2\sqrt{x^3}\sqrt{xyz}}{\sqrt{y^3}+2\sqrt{z^3}}=\sum\dfrac{2\sqrt{x^3}}{\sqrt{y^3}+2\sqrt{z^3}}\)(vì xyz=1).
đặt \(\left\{{}\begin{matrix}\sqrt{x^3}=a\\\sqrt{y^3}=b\\\sqrt{z^3}=c\end{matrix}\right.\)(\(a,b,c>0\))thì giả thiết trở thành cho abc=1. tìm Min \(P=\dfrac{2a}{b+2c}+\dfrac{2b}{c+2a}+\dfrac{2c}{a+2b}\)
Áp dụng BĐT cauchy-schwarz:
\(P=2\left(\dfrac{a^2}{ab+2ac}+\dfrac{b^2}{bc+2ab}+\dfrac{c^2}{ac+2bc}\right)\ge\dfrac{2\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge\dfrac{2\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=2\)( AM-GM \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\))
Dấu = xảy ra khi a=b=c=1 hay x=y=z=1
2
\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)
A= \(\sqrt{9x^2-6x+1}+\sqrt{9x^2-12x+4}\)
A= \(\sqrt{\left(3x-1\right)^2}+\sqrt{\left(3x-2\right)^2}=\left|3x-1\right|+\left|3x-2\right|\)
ta có |3x-1|+|3x-2|=|3x-1|+|2-3x| ≥ |3x-1+2-3x|=1
=> A ≥ 1
=> Min A =1 khi 1/3 ≤ x ≤ 2/3
Áp dụng bđt Cauchy-Schwarz:
\(A=\dfrac{1}{\sqrt{x\left(y+2z\right)}}+\dfrac{1}{\sqrt{y\left(z+2x\right)}}+\dfrac{1}{\sqrt{z\left(x+2y\right)}}\)
\(\ge\dfrac{\left(1+1+1\right)^2}{\sqrt{x\left(y+2z\right)}+\sqrt{y\left(z+2x\right)}+\sqrt{z\left(x+2y\right)}}\)
\(=\dfrac{9}{\sqrt{x\left(y+2z\right)}+\sqrt{y\left(z+2x\right)}+\sqrt{z\left(x+2y\right)}}\)
Áp dụng liên tiếp Bunyakovsky và AM-GM:
\(\left(\sqrt{x\left(y+2z\right)}+\sqrt{y\left(z+2x\right)}+\sqrt{z\left(x+2y\right)}\right)^2\)
\(\le\left(1^2+1^2+1^2\right)\left[x\left(y+2z\right)+y\left(z+2x\right)+z\left(x+2y\right)\right]\)
\(=3.3\left(xy+yz+xz\right)\)
Mà \(3\left(xy+yz+xz\right)\le\left(x+y+z\right)^2=3\)
\(3.3\left(xy+yz+xz\right)\le3.3=9\)
\(\Leftrightarrow\sqrt{x\left(y+2z\right)}+\sqrt{y\left(z+2x\right)}+z\sqrt{\left(x+2y\right)}\le\sqrt{9}=3\)
\(\Leftrightarrow A\ge\dfrac{9}{3}=3."="\Leftrightarrow x=y=z=\dfrac{1}{\sqrt{3}}\)
\(A\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{1}{2}\left(x+y+z\right)\ge\dfrac{1}{2}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=\dfrac{1}{2}\)
\(A_{min}=\dfrac{1}{2}\) khi \(x=y=z=\dfrac{1}{3}\)
Câu a :
Ta có : \(\sqrt{5+3x}-\sqrt{5-3x}=a\)
\(\Leftrightarrow\left(\sqrt{5+3x}-\sqrt{5-3x}\right)^2=a^2\)
\(\Leftrightarrow5+3x-2\sqrt{\left(5+3x\right)\left(5-3x\right)}+5-3x=a^2\)
\(\Leftrightarrow10-2\sqrt{25-9x^2}=a^2\)
\(\Leftrightarrow2\sqrt{25-9x^2}=10-a^2\)
\(\Leftrightarrow\sqrt{25-9x^2}=\dfrac{10-a^2}{2}\)
\(\Leftrightarrow25-9x^2=\dfrac{\left(a^2-10\right)^2}{2}\)
\(\Leftrightarrow9x^2=25-\dfrac{\left(a^2-10\right)^2}{2}\)
\(\Leftrightarrow3x=\sqrt{\dfrac{50-\left(a^2-10\right)^2}{2}}\)
\(\Leftrightarrow x=\dfrac{\sqrt{50-\left(a^2-10\right)^2}}{3\sqrt{2}}\)
\(P=\dfrac{3\sqrt{2}.\sqrt{10+2\sqrt{\dfrac{10-a^2}{2}}}}{\sqrt{50-\left(a^2-10\right)^2}}\)
Bạn tự rút gọn nữa nhé :))
Câu b : \(M=\dfrac{2x+y+z-15}{x}+\dfrac{x+2y+z-15}{y}+\dfrac{x+y+2z-24}{z}\)
\(=\dfrac{x-3}{x}+\dfrac{y-3}{y}+\dfrac{z-12}{z}\)
\(=3-3\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{4}{z}\right)\le3-3\left[\dfrac{\left(1+1+2\right)^2}{12}\right]=-1\)