K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2020

a, Do ABCD là hình bình hành ( gt ) 

=> BAD + ADC = 180 độ ( t/c hbh )

Mà BAD = 120 độ ( gt ) => ADC = 60 độ

Gọi đường phân giác của góc ADC đi qua trung điểm cạnh AB là DI

=> ADI = CDI = 30 độ

Xét tam giác ADI có : DAI + ADI + AID = 180 độ ( tổng 3 góc của 1 tam giác )

=> AID = ADI = 30 độ => Tam giác AID cân

=> AI = AD mà AI = 1/2 AB => AD = 1/2 AB hay AB = 2.AD ( đpcm )

b, CM ADF đều 

Do ABCD là hbh ( gt ) => AB = CD ( t/c hbh )

=> 1/2 AB = 1/2 CD => AI = BI = DF = CF

mà AI = AD => AD = DF

=> tam giác ADF cân tại D có góc ADF = 60 độ ( cmt )

=> ADF đều

CM AFC cân : 

DO tam giác ADF đều ( cmt ) => AF = DF ( t/c tg đều )

mà DF = FC ( gt ) => AF = FC => tam giác AFC cân tại F ( đpcm )

c, Ta có : AF = DF = CF ( cmt ) 

=> AF = 1/2 ( DF +CF ) => AF = 1/2 CD

Xét tam giác ADC có AF là trung tuyến ứng với cạnh CD

và AF = 1/2CD 

=> tam giác ADC vuông tại A ( dấu hiệu nhận biết tam giác vuông )

=> AD vuông góc với AD ( Đpcm )

2 tháng 8 2018

a, E là trung điểm của AB (gt) \(\Rightarrow AE=EB=\frac{1}{2}AB\)

\(AB=2AD\left(gt\right)\Rightarrow AD=\frac{1}{2}AB\)

Do đó: \(AE=AD\Rightarrow\Delta AED\) cân tại A \(\Rightarrow\widehat{AED}=\widehat{ADE}\) (tính chất tam giác cân) (1)

ABCD là hình bình hành(gt) \(\Rightarrow AB//CD\Rightarrow\widehat{AED}=\widehat{EDC}\) ( 2 góc so le trong ) (2)

Từ (1) và (2) \(\Rightarrow\widehat{ADE}=\widehat{EDC}\) mà tia DE nằm giữa 2 tia DA,DC \(\Rightarrow\)AE là tia phân giác của \(\widehat{ADC}\)

Vậy tia phân giác của \(\widehat{ADC}\) đi qua trung điểm E của AB.

b, ABCD là hình bình hành(gt) \(\Rightarrow AB=DC\)

F là trung điểm của DC (gt) \(\Rightarrow FD=FC=\frac{1}{2}DC=\frac{1}{2}AB=AD\)

Do đó: \(\Delta ADF\) cân tại D 

\(AB//DC\left(cmt\right)\Rightarrow\widehat{BAD}+\widehat{ADF}=180^0\)

                                 \(\Rightarrow120^0+\widehat{ADF}=180^0\) (vì \(\widehat{BAD}=120^0\) )

                                 \(\Rightarrow\widehat{ADF}=60^0\)

Ta có:  \(\Delta ADF\) cân tại D và \(\widehat{ADF}=60^0\left(cmt\right)\Rightarrow\Delta ADF\) đều

\(\Rightarrow AF=DF=AD\) \(\left(ĐN\right)\)

Mặt khác, DF = 1/2 DC nên AF = 1/2 DC

\(\Delta ADC\)có trung tuyến AF = 1/2 DC nên \(\Delta ADC\)vuông tại A

Vậy \(AD\perp AC.\)

Mong bạn hiêu bài và chúc bạn học tốt.