K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2020

A B C E D H I

a) Xét \(\Delta AEC\) và \(\Delta ADB\) có :

\(\hept{\begin{cases}\widehat{A}chung\\\widehat{AEC}=\widehat{ADB}\left(=90^o\right)\end{cases}}\)

\(\Rightarrow\Delta AEC\) đồng dạng  \(\Delta ADB\) (g.g)

b)  Ta có : \(\Delta AEC\) đồng dạng   \(\Delta ADB\)

\(\Rightarrow\frac{AE}{AD}=\frac{AC}{AB}\)

Xét \(\Delta ADE\) và \(\Delta ABC\) có :

\(\hept{\begin{cases}\widehat{A}chung\\\frac{AE}{AD}=\frac{AC}{AB}\left(cmt\right)\end{cases}}\)

\(\Rightarrow\Delta ADE\) đồng dạng \(\Delta ABC\) (c.g.c)

c)  Xét  \(\Delta ABF\) và \(\Delta CBE\) có :

\(\hept{\begin{cases}\widehat{B}hung\\\widehat{AFB}=\widehat{CEB}=90^o\end{cases}}\)

\(\Rightarrow\Delta ABF\) đồng dạng \(\Delta CBE\) (g.g)

\(\Rightarrow\frac{AB}{CB}=\frac{BF}{BE}\Rightarrow BE\cdot AB=BC\cdot BF\)

Chứng minh tương tự ta có : \(\Delta BDC\) đồng dạng \(\Delta AFC\) (g.g)

\(\Rightarrow\frac{DC}{FC}=\frac{BC}{AC}\Rightarrow CD\cdot AC=FC\cdot BC\)

Khi đó : \(BE.AB+CD.AC=BF.BC+FC.BC=BC.BC=BC^2\)

 

A B C D E F H I

a, Xét \(\Delta AEC\)và \(\Delta ABD\)có 

\(\widehat{AEC}=\widehat{ADB}=90^0\)

\(\widehat{A}chung\)

\(\Rightarrow\)\(\Delta AEC\)\(đồng dạng\)\(\Delta ABD\)(g.g)

b, Vì  \(\Delta AEC\)\(đồng dạng\)\(\Delta ABD\)(g.g) nên \(\frac{AD}{AC}=\frac{AE}{AB}\)

Xét \(\Delta ADE\)và \(\Delta ABC\)

​​​​​​\(\frac{AD}{AC}=\frac{AE}{AB}\)​,\(\widehat{A}\)chung

\(\Rightarrow\)\(\Delta ADE\)​đồng dạng \(\Delta ABC\)(c.g.c)

Các câu còn lại khi nào rảnh giải tiếp :P

3 tháng 4 2018

a) Xét tam giác AEC và tam giác ABD:

- ∠BAC chung

- ∠ACE = ∠ADB

⇒ △AEC đồng dạng △ABD (g.g)

b) Theo câu a ⇒ \(\dfrac{AE}{AC}=\dfrac{AD}{AB}\)

- ∠BAC chung

=> △ADE đồng dạng △ABC

c) △BEC đồng dạng △BFA(g.g)

=> \(\dfrac{BE}{BF}=\dfrac{BC}{BA}\)

=> AB.BE=BF.BC (1)

△CDB đồng dạng △CFA(g.g)

=> \(\dfrac{CD}{CF}=\dfrac{BC}{AC}\) => CD.AC=CF.BC (2)

Từ (1) và (2) => AB.BE+CD.AC=BF.BC+CF.BC=BC(BF+CF)=BC2.

3 tháng 4 2018

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E co

góc DAB chung

=>ΔADB đồng dạng với ΔAEC

=>AD/AE=AB/AC

=>AD*AC=AB*AE;AD/AB=AE/AC

b: Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc DAE chung

=>ΔADE đồng dạng với ΔABC

=>góc ADE=góc ABC

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

góc BAD chung

Do đó: ΔABD∼ΔACE

Suy ra: AB/AC=AD/AE
hay \(AB\cdot AE=AD\cdot AC\)

b: XétΔADE và ΔABC có

AD/AB=AE/AC
góc DAE chung

Do đó: ΔADE∼ΔABC

5 tháng 5 2021

undefinedCHÚC BẠN HỌC TỐThaha

4 tháng 5 2018

T.i.c.k cho mình rồi mk cũng t... cho bạn

4 tháng 5 2018

Là s bn??

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc A chung

=>ΔABE đồng dạng với ΔACF

b: ΔABE đồng dạng với ΔACF

=>AE/AF=AB/AC

=>AE/AB=AF/AC và AE*AC=AB*AF

Xét ΔAEF và ΔABC có

AE/AB=AF/AC
góc FAE chung

=>ΔAEF đồng dạng với ΔABC