K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 1 2018

Lời giải:

Ta có:

\(\text{VT}=\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=\frac{(a+1)(b+1)(c+1)}{abc}\) (1)

Thay \(1=a+b+c\) kết hợp với bất đẳng thức AM-GM:

\((a+1)(b+1)(c+1)=(a+a+b+c)(b+a+b+c)(c+a+b+c)\)

\(=[(a+b)+(a+c)][(b+c)(b+a)][(c+a)+(c+b)]\)

\(\geq 2\sqrt{(a+b)(a+c)}.2\sqrt{(b+c)(b+a)}.2\sqrt{(c+a)(c+b)}\)

\(\Leftrightarrow (a+1)(b+1)(c+1)\geq 8(a+b)(b+c)(c+a)\)

Tiếp tục áp dụng AM-GM:

\((a+b)(b+c)(c+a)\geq 2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=8abc\)

Suy ra \((a+1)(b+1)(c+1)\geq 64abc\) (2)

Từ (1);(2) ta có \(\text{VT}\geq 64\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\)

22 tháng 12 2018

@Akai Haruma

NV
18 tháng 9 2021

\(\dfrac{a^3}{\left(b+1\right)\left(c+2\right)}+\dfrac{b+1}{12}+\dfrac{c+2}{18}\ge3\sqrt[3]{\dfrac{a^3\left(b+1\right)\left(c+2\right)}{216\left(b+1\right)\left(c+2\right)}}=\dfrac{a}{2}\)

Tương tự: \(\dfrac{b^3}{\left(c+1\right)\left(a+2\right)}+\dfrac{c+1}{12}+\dfrac{a+2}{18}\ge\dfrac{b}{2}\)

\(\dfrac{c^3}{\left(a+1\right)\left(b+2\right)}+\dfrac{a+1}{12}+\dfrac{b+2}{18}\ge\dfrac{c}{2}\)

Cộng vế:

\(VT+\dfrac{5}{36}\left(a+b+c\right)+\dfrac{7}{12}\ge\dfrac{1}{2}\left(a+b+c\right)\)

\(\Rightarrow VT\ge\dfrac{13}{36}\left(a+b+c\right)-\dfrac{7}{12}\ge\dfrac{13}{36}.3\sqrt[3]{abc}-\dfrac{7}{12}=\dfrac{1}{2}\) (đpcm)

25 tháng 9 2017

Áp dụng BĐT AM-GM ta có:

\(\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{b+1}{8}+\dfrac{c+1}{8}\)

\(\ge3\sqrt[3]{\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}\cdot\dfrac{b+1}{8}\cdot\dfrac{c+1}{8}}=\dfrac{3a}{4}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}+\dfrac{c+1}{8}+\dfrac{a+1}{8}\ge\dfrac{3b}{4};\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}+\dfrac{a+1}{8}+\dfrac{b+1}{8}\ge\dfrac{3c}{4}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT+\dfrac{2\left(a+b+c+3\right)}{8}\ge\dfrac{3\left(a+b+c\right)}{4}\)

\(\Leftrightarrow VT+\dfrac{2\left(3\sqrt[3]{abc}+3\right)}{8}\ge\dfrac{3\cdot3\sqrt[3]{abc}}{4}\Leftrightarrow VT\ge\dfrac{3}{4}=VP\)

Khi \(a=b=c=1\)

25 tháng 9 2017

khó

20 tháng 3 2022

Bất đẳng thức sai, chẳng hạn với \(a=b=10^{-4};c=0,5-a-b\).

NV
15 tháng 3 2022

\(\dfrac{a^3}{\left(b+2\right)\left(c+3\right)}+\dfrac{b+2}{36}+\dfrac{c+3}{48}\ge3\sqrt[3]{\dfrac{a^3\left(b+2\right)\left(c+3\right)}{1728\left(b+2\right)\left(c+3\right)}}=\dfrac{a}{4}\)

Tương tự: \(\dfrac{b^3}{\left(c+2\right)\left(a+3\right)}+\dfrac{c+2}{36}+\dfrac{a+3}{48}\ge\dfrac{b}{4}\)

\(\dfrac{c^3}{\left(a+2\right)\left(b+3\right)}+\dfrac{a+2}{36}+\dfrac{b+3}{48}\ge\dfrac{c}{4}\)

Cộng vế:

\(P+\dfrac{7\left(a+b+c\right)}{144}+\dfrac{17}{48}\ge\dfrac{a+b+c}{4}\)

\(\Rightarrow P\ge\dfrac{29}{144}\left(a+b+c\right)-\dfrac{17}{48}\ge\dfrac{29}{144}.3\sqrt[3]{abc}-\dfrac{17}{48}=\dfrac{1}{4}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

NV
20 tháng 1 2019

Nhìn qua đã biết là đề sai rồi bạn

Cho \(a,b,c\) các giá trị lớn ví dụ \(a=b=c=2\) là thấy sai ngay

14 tháng 12 2018

Từ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

\(\Leftrightarrow\dfrac{ab+bc+ac}{abc}=\dfrac{1}{a+b+c}\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ac\right)-abc=0\)

\(\Leftrightarrow a^2b+abc+a^2c+b^2a+b^2c+abc+bc^2+ac^2=0\)

\(\Leftrightarrow ab\left(a+b\right)+ac\left(a+b\right)+bc\left(a+b\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(ab+ac+bc+c^2\right)\left(a+b\right)=0\)

\(\Leftrightarrow\left[a\left(b+c\right)+c\left(b+c\right)\right]\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+c\right)\left(b+c\right)\left(a+b\right)=0\)

Thay vào từng TH suy ra M=0

10 tháng 8 2018

bài 2: ta có : \(Q=\left(\dfrac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\dfrac{1-a}{\sqrt{1-a^2}-\left(1-a\right)}\right)\left(\sqrt{\dfrac{1}{a^2}-1}-\dfrac{1}{a}\right).\sqrt{a^2-2a+1}\)

\(\Leftrightarrow Q=\left(\dfrac{\sqrt{1+a}\sqrt{1-a}+1-a}{\sqrt{1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}\right)\left(\dfrac{\sqrt{1-a^2}}{a}-\dfrac{1}{a}\right)\left(1-a\right)\) \(\Leftrightarrow Q=\left(\dfrac{\sqrt{1+a}+\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}\right)\left(\dfrac{\sqrt{1-a^2}-1}{a}\right)\left(1-a\right)\) \(\Leftrightarrow Q=\left(\dfrac{\sqrt{1-a^2}+1}{a}\right)\left(\dfrac{\sqrt{1-a^2}-1}{a}\right)\left(1-a\right)\) \(\Leftrightarrow Q=\left(\dfrac{1-a^2-1}{a^2}\right)\left(1-a\right)=a-1\)

b) ta có : \(Q^3-Q=\left(a-1\right)\left(\left(a-1\right)^2-1\right)=a\left(a-1\right)\left(a-2\right)\)

mà ta có : \(\left\{{}\begin{matrix}a>0\\a-1< 0\\a-2< 0\end{matrix}\right.\Rightarrow a\left(a-1\right)\left(a-2\right)>0\) \(\Rightarrow Q^3-Q>0\Leftrightarrow Q^3>Q\)

vậy \(Q^3>Q\)

10 tháng 8 2018

Nguyễn Huy TúAkai HarumaLightning FarronNguyễn Thanh Hằngsoyeon_Tiểubàng giảiMashiro ShiinaVõ Đông Anh Tuấn

Hoàng Lê Bảo NgọcTrần Việt Linh

cứu tôi với