Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overline{0,abc}\) . ( a + b + c ) = 1
=> \(\overline{abc}\) ( a + b + c ) = 1000
Mà \(\overline{abc}\) và ( a + b + c ) là các số tự nhiên nên ( a + b + c ) và \(\overline{abc}\) là ước của 1000 = 125.8 = 200.5 = 100.10 = 500.2
Xét trong 4 trường hợp đó ta chọn 1000 = 125.8 ( Thỏa \(\overline{abc}\) = 125 ; a+b+ c = 1+2+5 = 8 và \(\overline{abc}\) .(a+b+c)=1000
Vậy \(\overline{0.abc}\) = 0.125
0,abc(a+b+c)=1 <=> abc(a+b+c)=1000 (nhân 2 vế với 1000)
Ta có abc là số có 3 chữ số nên abc(a+b+c)=1000= 100.10=125.8=250.4=500.2=200.5
TH1: 1000=100.10 => abc=100 và a+b+c =100 (loại)
TH2: 1000=125.8=> abc =125 và a+b+c=8 (thảo mãn)
TH3:1000=250.4=>abc=250 và a+b+c=4 (loại)
TH4: 1000=500.2=>abc=500 và a+b+c =2 (loại)
TH5:1000=200.5 =>abc=200 và a+b+c=5 (loại)
Vậy,abc=125