K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2021

`A=(1+3+3^2+3^3+3^4)+....+(....+3^11)`

`=40+3^4 .40 + 3^8 .40`

`=40.(1+3^4+3^8)`

`=4.10 (1+3^4+3^8) ⋮ 4`.

14 tháng 5 2021

`1+3+3^2+...+3^11`
`=3+1+3^2(1+3)+......+3^10(3+1)`
`=(3+1)(1+3^2+...+3^10)`
`=4(1+3^2+...+3^10) \vdots 4(đpcm)`

17 tháng 8 2018

Ta có : n + 3 = (n + 1) + 2

Do n + 1\(⋮\)n + 1

Để n + 3 \(⋮\)n + 1 thì 2 \(⋮\)n + 1 => n + 1 \(\in\)Ư(2) = {1; -1; 2; - 2}

Lập bảng :

 n + 1 1  -1 2 -2
   n 0 -2 1 -3

Vậy n \(\in\){0; -2; 1; -3} thì n + 3 \(⋮\)n + 1

b) Ta có : 2n + 7 = 2.(n - 3) + 13 

Do n - 3 \(⋮\)n - 3

Để 2n + 7 \(⋮\)n - 3 thì 13 \(⋮\)n - 3 => n - 3 \(\in\)Ư(13) = {1; -1; -13 ;  13}

Lập bảng :

 n - 3 1 -1 13 -13
   n 4 2 16 -10

Vậy n \(\in\){4; 2; 16; -10} thì 2n + 7 \(⋮\)n - 3

17 tháng 8 2018

Bài 1 :

a) \(n+3⋮n+1\)

\(a+1+2⋮n+1\)

\(\Rightarrow2⋮n+1\)

\(\Rightarrow n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

n+11-12-2
n0-21-3

b) c) d) tương tự

Bài 2 :

\(A=5+4^2\cdot\left(1+4\right)+...+4^{58}\cdot\left(1+4\right)\)

\(A=5+4^2\cdot5+...+4^{58}\cdot5\)

\(A=5\cdot\left(1+4^2+...+4^{58}\right)⋮5\)

Còn lại : tương tự

Ta có:

Đặt B=\(2^2+2^3+2^4+...+2^{20}\)

⇒2 B=\(2^3+2^4+2^5+...+2^{21}\)

\(\Rightarrow2B-B=2^{21}-2^2\)

\(\Rightarrow A=4+B=2^{21}-2^2+4=2^{21}\)

Sửa đề: A=4+4^2+4^3+...+4^23+4^24

A=4(1+4+4^2)+...+4^22(1+4+4^2)

=21(4+...+4^22) chia hết cho 21

A=(4+4^2)+4^2(4+4^2)+...+4^22(4+4^2)

=20(1+4^2+...+4^22) chia hết cho 20

1 tháng 9 2018

ai nhanh mình k

5 tháng 5 2021

1 /2 -1 /4 + 1 /8-1 /16 + 1 /32-1 /64 < 1 /3

Cách 1:21/64 < 1/3

Cách 2:21/64 < 0.(3)

Đúng

1 /2 + 1 /4 + 1 /8 + 1 /16 + 1 /32 + 1 /64 < 1 /3

Cách 2:63/64 < 0.(3)

Ko đúng

Câu 3 mình ko biết