Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) S=52/1.6+52/6.11+52/11.16+52/16.21+52/21.26
S=5.(5.1/6+5/6.11+5/11.16+5/16.21+5/21.26)
S=5.(1/1-1/6+1/6-1/11+1/11-1/16+1/16-1/21+1/21-1/26)
S=5.(1/1-1/26)
S=5.25/26
S=125/26
b) (1-1/2).(1-1/3).(1-1/4).(1-1/5).....(1-1/19).(1-1/20)
=1/2.2/3.3/4.4/5.....18/19.19/20
=1.2.3.4.....18.19/2.3.4.5.....19.20
=1/20
Chúc bạn học tốt!
Ta có :
\(S=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}\)
\(S=5\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}\right)\)
\(S=5\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}\right)\)
\(S=5\left(1-\frac{1}{26}\right)\)
\(S=5.\frac{25}{26}\)
\(S=\frac{125}{26}\)
Vậy \(S=\frac{125}{26}\)
Chúc bạn học tốt ~
Ta có :
\(A=\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+...+\frac{5^2}{91.96}\)
\(A=5\left(\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{91.96}\right)\)
\(A=5\left(\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{91}-\frac{1}{96}\right)\)
\(A=5\left(\frac{1}{6}-\frac{1}{96}\right)\)
\(A=5.\frac{5}{32}\)
\(A=\frac{25}{32}\)
Vậy \(A=\frac{25}{32}\)
Chúc bạn học tốt ~
a, 1+6+11+16+...+46+51
Số số hạng là : (51-1):5+1 = 11 ( số )
Tổng là : (51+1).11:2=286
b, Đặt A = \(\dfrac{5^2}{1.6}+\dfrac{5^2}{6.11}+\dfrac{5^2}{11.16}+\dfrac{5^2}{16.21}+\dfrac{5^2}{21.26}+\dfrac{5^2}{26.31 } \)
\(\dfrac{1}{5}A=\) \(\dfrac{5}{1.6}+\dfrac{5}{6.11}+\dfrac{5}{11.16}+\dfrac{5}{16.21}+\dfrac{5}{21.26}+\dfrac{5}{26.31}\)
\(\dfrac{1}{5}A=\) \(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{26}+\dfrac{1}{26}-\dfrac{1}{31}\)
\(\dfrac{1}{5}A=1-\dfrac{1}{31}\)
\(\dfrac{1}{5}A=\dfrac{30}{31}\)
\(A=\dfrac{30}{31}:\dfrac{1}{5}=\dfrac{150}{31}\)
Vậy..
E=\(\frac{10}{1\cdot6}\) +\(\frac{10}{6\cdot11}\) +\(\frac{10}{11\cdot16}\) +\(\frac{10}{16\cdot21}\) +\(\frac{10}{21\cdot26}\) +\(\frac{10}{26\cdot31}\) = 5*(1-\(\frac{1}{31}\) ) =5*\(\frac{30}{31}\) =\(\frac{150}{31}\)
S:5=\(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{21.26}\)
S:5=\(\frac{6-1}{1.6}+\frac{11-6}{6.11}+...+\frac{26-21}{21.26}\)
S:5=\(\frac{6}{1.6}-\frac{1}{1.6}+\frac{11}{6.11}-\frac{6}{6.11}+...+\frac{26}{21.26}-\frac{21}{21.26}\)
S:5=1-\(\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+....+\frac{1}{21}-\frac{1}{26}\)
S:5=1-\(\frac{1}{26}\)
S:5=\(\frac{25}{26}\)
S=\(\frac{25}{26}.5\)
S=\(\frac{125}{26}\)
\(A=\)\(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+\frac{1}{16.21}+...+\frac{1}{51.56}\)
\(5A=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{51.56}\)
\(5A=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{51}-\frac{1}{56}\)
\(5A=1-\frac{1}{56}=\frac{55}{56}\)
\(A=\frac{55}{56}\div5=\frac{55}{56}.\frac{1}{5}=\frac{11}{56}\)
a) Đề phải là thế này chứ \(\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{101.106}\)
Giai
\(=\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{101.106}\)
\(=\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{101}-\frac{1}{106}\)
\(=\frac{1}{6}-\frac{1}{106}\)
\(=\frac{25}{159}\)
b) Đặt \(A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{100}}\)
\(\Rightarrow5A=1+\frac{1}{5}+...+\frac{1}{5^{99}}\)
\(\Rightarrow5A-A=\left(1+\frac{1}{5}+...+\frac{1}{5^{99}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{100}}\right)\)
\(\Rightarrow4A=1-\frac{1}{5^{100}}\)
\(\Rightarrow A=\frac{1-\frac{1}{5^{100}}}{4}\)