Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a, Chứng minh a^5-a chia hết cho 5
b, Chứng minh a^7-a chia hết cho 7
\(a+3\text{ chia hết cho 5 do đó:}a\text{ chia 5 dư 2};\text{ }b+4\text{ chia hết cho 5 nên }b\text{ chia 5 dư 1}\)
\(\text{ do đó:}a^2+b^2\equiv2^2+1^2\equiv5\equiv0\left(\text{mod 5}\right)\text{ ta có điều phải chứng minh}\)
Vì \(a+3⋮5\)\(\Rightarrow\)\(a\)có dạng \(a=5m+2\)( \(m\inℤ\))
\(b+4⋮5\)\(\Rightarrow\)\(b\)có dạng \(b=5n+4\)( \(n\inℤ\) )
\(a^2+b^2=\left(5m+2\right)^2+\left(5n+1\right)^2\)
\(=25m^2+20m+4+25n^2+10n+1\)
\(=25m^2+20m+25n^2+10n+5⋮5\)( đpcm )
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
Có a2 - 1 = (a+1)(a-1)
Xét tích (a-1)a(a+1) chia hết cho 3
Do a là số ng tố > 3 nên a không chia hết cho 3
=> (a-1)(a+1) chia hết cho 3 (1)
Có a là số lẻ, đặt a = 2k + 1
Do vậy a2 - 1 = 4k(k+1)
Có k(k+1) luôn chia hết cho 2 => ak(k+1) chia hết cho 8 (2)
Từ (1) và (2) suy ra a2 - 1 chia hết cho 24 ( vì (3;8) =1 )
\(\frac{\text{(a+1)[a(a-1)-(a+3)(a+2)]}}{a+1}\)
ta có:
(a+1).a.(a-1) chia hết cho 6
(a+1).(a+3).a+2) chia hết cho 6.
(3 số tự nhiên liên kề thì chia hết cho 6);
suy ra : a(a-1)-(a+3)(a+2) chia hết cho 6
a)Ta có:\(a\left(a-1\right)-\left(a+2\right)\left(a+3\right)=a^2-a-a^2-5a-6=-6a-6\) chia hết cho 6
Câu b) tương tự.
Với \(a\in Z\), 5 là số nguyên tố nên theo định lí Phéc-ma ta có:
\(a^5-a\) \(⋮5\)
Mà theo đề \(a^5⋮5\) nên a \(⋮5\) hay \(a^2⋮25\) và 150n \(⋮25\)
Vậy \(a^2+150n\) \(⋮25\)