K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2016

A=(4m-1)(n-4)-(m-4)(4n-1)

=4mn-16m-n+4-(4mn-m-16n+4)

=4mn-16m-n+4-4mn+m+16n-4

=5mn-4mn-16m+m-n+16n+4-4

=-15m+15n

\(\Rightarrow\)A chia hết cho 15 (đpcm)

19 tháng 7 2017

\(\left(4m-1\right)\left(n-4\right)-\left(m-4\right)\left(4n-1\right)\)= 4mn-16m-n+4-4mn+m+16n=15n-15m=15(n-m)

Thấy 15 chia hết cho 5 => 15(m+n) chia hết cho 5 với mọi x

19 tháng 7 2017

Nhầm xíu, Vậy A* chia hết cho 15 với mọi m,n thuộc Z

17 tháng 10 2017

giúp với mấy bạn

17 tháng 10 2017

A = ( 4m - 1 )( n - 4 ) - ( m - 4 )( 4n - 1 )

= 4mn-16m-n+4-4mn+m+16n-4

= -15m+15n

= 15(-m+n) chia het cho 15 ........

ok hihi

13 tháng 9 2017

( 4m - 1 ) nha

4 tháng 5 2017

a. Ta có: m<n

<=> 2m<2n (nhân cả hai vế với 2)

<=> 2m+1<2n+1 (cộng cả hai vế với 1) \(\xrightarrow[]{}\) đpcm

b. Ta có: m<n

<=> m-2<n-2 (cộng cả hai vế với -2)

<=> 4(m-2)<4(n-2) (nhân cả hai vế với 4) \(\xrightarrow[]{}\) đpcm

4 tháng 5 2017

c. Ta có: m<n

<=> -6m>-6n (nhân cả hai vế với -6)

<=> 3-6m>3-6n (cộng cả hai vế với 3) \(\xrightarrow[]{}\) đpcm

d. Ta có: m<n

<=> 4m<4n (nhân cả hai vế với 4)

<=> 4m+1<4n+1 (cộng cả hai vế với 1)

mà 4n+1<4n+5

=> 4m+1<4n+5 \(\xrightarrow[]{}đpcm\)

AH
Akai Haruma
Giáo viên
18 tháng 11 2019

Lời giải:

Ta có:

\(3m^2+m=4n^2+n\)

\(\Leftrightarrow 4m^2+m=4n^2+n+m^2\)

\(\Leftrightarrow 4(m^2-n^2)+(m-n)=m^2\)

\(\Leftrightarrow (m-n)(4m+4n+1)=m^2\)

Đặt $d$ là ước chung lớn nhất của $m-n$ và $4m+4n+1$

\(\Rightarrow \left\{\begin{matrix} m-n\vdots d\\ 4m+4n+1\vdots d\end{matrix}\right.\Rightarrow \left\{\begin{matrix} m^2=(m-n)(4m+4n+1)\vdots d^2\\ 4(m-n)+(4m+4n+1)\vdots d\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} m\vdots d\\ 8m+1\vdots d\end{matrix}\right.\Rightarrow 1\vdots d\Rightarrow d=1\)

Vậy $m-n, 4m+4n+1$ nguyên tố cùng nhau. Mà tích của chúng là 1 số chính phương nên bản thân $m-n, 4m+4n+1$ cũng là các số chính phương (đpcm).

AH
Akai Haruma
Giáo viên
8 tháng 11 2019

Lời giải:

Ta có:

\(3m^2+m=4n^2+n\)

\(\Leftrightarrow 4m^2+m=4n^2+n+m^2\)

\(\Leftrightarrow 4(m^2-n^2)+(m-n)=m^2\)

\(\Leftrightarrow (m-n)(4m+4n+1)=m^2\)

Đặt $d$ là ước chung lớn nhất của $m-n$ và $4m+4n+1$

\(\Rightarrow \left\{\begin{matrix} m-n\vdots d\\ 4m+4n+1\vdots d\end{matrix}\right.\Rightarrow \left\{\begin{matrix} m^2=(m-n)(4m+4n+1)\vdots d^2\\ 4(m-n)+(4m+4n+1)\vdots d\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} m\vdots d\\ 8m+1\vdots d\end{matrix}\right.\Rightarrow 1\vdots d\Rightarrow d=1\)

Vậy $m-n, 4m+4n+1$ nguyên tố cùng nhau. Mà tích của chúng là 1 số chính phương nên bản thân $m-n, 4m+4n+1$ cũng là các số chính phương (đpcm).