Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(\dfrac{\sqrt{444}}{\sqrt{111}}=\sqrt{\dfrac{444}{111}}=\sqrt{4}=2\)
b. \(\sqrt{75}-\sqrt{27}-\sqrt{108}\)
\(=5\sqrt{3}-3\sqrt{3}-6\sqrt{3}\)
\(=-4\sqrt{3}\)
\(A=\sqrt{12}+2\sqrt{27}+3\sqrt{45}-9\sqrt{48}\)
\(=2\sqrt{3}+6\sqrt{3}+9\sqrt{5}-36\sqrt{3}\)
\(=9\sqrt{5}-28\sqrt{3}\)
\(B=\left(\sqrt{48}-2\sqrt{75}+\sqrt{108}-\sqrt{147}\right):\sqrt{3}\)
\(=4-2\cdot5+6-7\)
\(=4-10+6-7\)
=-7
A=\(\sqrt{12}\)+2\(\sqrt{27}\)+3\(\sqrt{45}\) -9\(\sqrt{48}\)
=\(\sqrt{4.3}\) +2\(\sqrt{9.3}\)+3\(\sqrt{9.5}\) -9\(\sqrt{16.3}\)
=2\(\sqrt{3}\) +6\(\sqrt{3}\)+9\(\sqrt{5}\) -36\(\sqrt{3}\)
=\(\sqrt{3}\)(2+6-36) + 9\(\sqrt{5}\)
=9\(\sqrt{5}\)- 28\(\sqrt{3}\)
\(999+888+777+666+555+444+333+222+111\)
\(=\left(999+111\right)+\left(888+222\right)+\left(777+333\right)+\left(666+444\right)+555\)
\(=1110+1110+1110+1110+555\)
\(=\left(1110\times4\right)+555\)
\(=4440+555\)
\(=4995\)
Đề sai: Ví dụ m = 1 => B = \(\sqrt{46}\) không là số nguyên
Sửa đề: B = \(\sqrt{444...4+444...4+1}\)
B2 = 444....4 + 444....4 + 1
Đặt k = 111...1 (m chữ số 1 ) => 9k = 999..9 (m chữ số 9 ) = 10m - 1 => 10m = 9k + 1
Ta có : 999...9 (2m chữ số 9 ) = 9 x 111....1 (2m chữ số ) = 102m - 1
=> 111..1 (2m chữ số 1) = \(\frac{10^{2m}-1}{9}\)=> 444...4 (2m chữ số 4 ) = \(\frac{4.\left(10^{2m}-1\right)}{9}=\frac{4.\left(\left(9k+1\right)^2-1\right)}{9}=\frac{4}{9}.\left(81k^2+18k\right)=36k^2+8k\)
Ta có: B2 = 36k2 + 8k + 4.k + 1 = 36k2 + 12 k + 1 = (6k + 1)2 => B = 6k + 1 là số nguyên => đpcm
a: \(5\sqrt{2}-8\sqrt{3}+30\sqrt{3}-6\sqrt{3}=5\sqrt{2}+16\sqrt{3}\)
b: \(=14\sqrt{3}-\dfrac{3}{32}\cdot8\sqrt{3}+\dfrac{4}{18}\cdot9\sqrt{3}-\dfrac{1}{10}\cdot10\sqrt{3}\)
\(=14\sqrt{3}-\dfrac{3}{4}\sqrt{3}+2\sqrt{3}-1\sqrt{3}=\dfrac{57}{4}\sqrt{3}\)
c: \(=\dfrac{-1}{2}\cdot6\sqrt{3}+\dfrac{1}{15}\cdot5\sqrt{3}-\dfrac{1}{22}\cdot11\sqrt{3}+2\sqrt{3}\)
\(=-3\sqrt{3}+\dfrac{1}{3}\sqrt{3}-\dfrac{1}{2}\sqrt{3}+2\sqrt{3}=-\dfrac{7}{6}\sqrt{3}\)
d: \(=\dfrac{5}{8}\cdot4\sqrt{3}-\dfrac{1}{33}\cdot11\sqrt{3}+\dfrac{3}{14}\cdot7\sqrt{3}-\dfrac{1}{4}\cdot8\sqrt{3}\)
\(=\dfrac{5}{2}\sqrt{3}-\dfrac{1}{3}\sqrt{3}+\dfrac{3}{2}\sqrt{3}-2\sqrt{3}=\dfrac{5}{3}\sqrt{3}\)
a \(\dfrac{\sqrt{444}}{\sqrt{111}}=\dfrac{\sqrt{4\times111}}{\sqrt{111}}=\dfrac{2\sqrt{111}}{\sqrt{111}}=2\)
b\(\sqrt{75}-\sqrt{27}-\sqrt{108}=\sqrt{25\times3}-\sqrt{9\times3}-\sqrt{36\times3}=5\sqrt{3}-3\sqrt{3}-6\sqrt{3}=-4\sqrt{3}\)