K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2015

 \(85=17.5\)

 Ta có:

\(a=4^0+4^1+4^2+4^3+...+4^{96}+4^{97}\)

\(=4^0+4^1+4^2\left(4^0+4^1\right)+...+4^{96}\left(4^0+4^1\right)\)

\(=\left(4^0+4^1\right)\left(1+4^2+...+4^{96}\right)\)

\(a=5\left(1+4^2+...+4^{96}\right)\)nên \(a\) chia hết cho  \(5\)

Lại có: \(a=4^0+4^1+4^2+4^3+...+4^{96}+4^{97}\)

\(=4^0+4^2+4^1\left(4^0+4^2\right)+4^4\left(4^0+4^2\right)+4^5\left(4^0+4^2\right)+...+4^{94}\left(4^0+4^2\right)+4^{95}\left(4^0+4^2\right)\)

\(a=17\left(1+4^1+4^4+4^5+...+4^{94}+4^{95}\right)\)nên \(a\) chia hết cho \(17\)

Mà \(\left(5;17\right)=1\)

Vậy, ......

24 tháng 3 2021

Ta có:

A=9999931999−5555571997

A=9999931998.999993−5555571996.555557

A=(9999932)999.999993 − (5555572)998.555557

A=\(\overline{\left(....9\right)}^{999}\) . 999993 - \(\overline{\left(...1\right)}.\text{555557}\)

A=\(\overline{\left(...7\right)}-\overline{\left(...7\right)}\)

A= \(\overline{\left(...0\right)}\)

Vì A có tận cùng là 0 nên \(A⋮5\)

 A= (21+22+23)+(24+25+26)+...+(258+259+260)

   =20(21+22+23)+23(21+22+23)+...+257(21+22+23)

   =(21+22+23)(20+23+...+257)

   =     14(20+23+...+257) chia hết cho 7

Vậy A chia hết cho 7     

25 tháng 6 2015

gọi 1/41+1/42+1/43+...+1/80=S

ta có :

S>1/60+1/60+1/60+...+1/60

S>1/60 x 40

S>8/12>7/12

Vậy S>7/12

30 tháng 12 2018

\(b,\)Vì p là SNT > 3 => p có dạng : 3k + 1 ; 3k + 2 ( k thuộc N)

Với p = 3k + 1

\(=>\left(3k+2\right)\left(3k\right)⋮3\)(1)

Với p = 3k + 2

\(=>\left(3k+3\right)\left(3k+1\right)=3\left(k+1\right)\left(3k+1\right)⋮3\)(2)

Từ (1) và (2) => ĐPCM