K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2018

Ta có: a3+b3+c3=3abc <=> a3+b3+c3-3abc=0

<=>\(a^3+3a^2b+3ab^2+b^3+c^3-3ab\left(a+b\right)-3abc=0\)

<=>\(\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

<=>\(\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

<=>\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

<=>\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

Mà a+b+c khác 0

=>\(a^2+b^2+c^2-ab-bc-ca=0\)

<=>\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

<=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

<=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

<=>\(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}}a=b=c}\)

=>\(N=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)

27 tháng 3 2018

Được bạn nhé :"))))

Ủng hộ mình = cách theo dõi mình nha

27 tháng 3 2018

người ta hỏi thầy ( cô) giáo chứ có phải.......

8 tháng 4 2018

bình phương (1/a+1/b+1/c) rồi áp dụng HĐT tính bình thường

14 tháng 11 2018

\(\left(a+b+c\right)^2=a^2+b^2+c^2\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2\)

\(\Rightarrow2\left(ab+bc+ac\right)=0\)

\(\Rightarrow ab+bc+ac=0\)

\(\Rightarrow\frac{\left(a+b+c\right)}{abc}=0\)

\(\Rightarrow\frac{ab}{abc}+\frac{bc}{abc}+\frac{ac}{abc}=0\)

\(\Rightarrow\frac{1}{c}+\frac{1}{a}+\frac{1}{b}=0\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{-1}{c}\)

\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(\frac{-1}{c}\right)^3\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)=-\frac{1}{c^3}\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{3}{ab}.\left(-\frac{1}{c}\right)=0\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}-\frac{3}{ab}=0\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\left(đpcm\right)\)

14 tháng 11 2018

\(\left(a+b+c\right)^2=a^2+b^2+c^2\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2\Rightarrow ab+bc+ac=0\)

\(\Rightarrow\frac{ab+bc+ac}{abc}=0\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\left(\frac{1}{a}\right)^3+\left(\frac{1}{b}\right)^3+\left(\frac{1}{c}\right)^3=3.\frac{1}{a}.\frac{1}{b}.\frac{1}{c}\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

19 tháng 6 2017

Nhận xét:\(\left(a+b\right)^3=a^3+b^3+3a^2b+3ab^2\)

=>   \(a^3+b^3=\left(a+b\right)^3-3a^2b-3ab^2\)

ta có \(a^3+b^3+c^3-3abc\)

Thay vào biểu thức trên ta có:

\(\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc\)

\(\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

=\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

=\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

Vay \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ab\right)\)

Do \(a^3+b^3+c^3=3abc\)và theo đầu bài \(a+b+c\ne0\)nen  \(a^2+b^2+c^2-ac-bc-ab=0\)

=> \(a=b=c\)

Vay  N = \(\frac{3a^2}{\left(3a\right)^2}=\frac{1}{3}\)

7 tháng 12 2015

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

Mà  \(a+b+c\ne0\left(gt\right)\)

\(\Leftrightarrow a=b=c\)

Do đó:

\(A=\frac{a^2+2b^2+6c^2}{\left(a+b+c\right)^2}+2015=\frac{a^2+2a^2+6c^2}{\left(a+a+a\right)^2}+2015=\frac{9a^2}{9a^2}+2015=1+2015=2016\)

21 tháng 6 2018

mik ko biết

21 tháng 6 2018

Ta có: a3+b3+c3=3abc

<=> (a+b+c)(a2+b2+c2-ab-bc-ca)=0

<=> (a+b+c)(2a2+2b2+2c2-2ab-2bc-2ca)=0

<=> (a+b+c)[(a-b)2+(b-c)2+(c-a)2 ] = 0

<=> \(\orbr{\begin{cases}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\end{cases}}\)

<=> \(\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)

Vì a,b,c phân biệt nên a+b+c=0 => \(\hept{\begin{cases}a=-\left(b+c\right)\\b=-\left(c+a\right)\\c=-\left(a+b\right)\end{cases}}\)(*)

Lại có: \(M=\frac{ab^2}{a^2+b^2-c^2}+\frac{bc^2}{b^2+c^2-a^2}+\frac{ca^2}{c^2+a^2-b^2}\)

Thay (*) vào M ta được:

\(M=\frac{-\left(b+c\right)b^2}{\left(b+c\right)^2+\left(b+c\right)\left(b-c\right)}+\frac{-\left(c+a\right)c^2}{\left(c+a\right)^2+\left(c+a\right)\left(c-a\right)}+\frac{-\left(a+b\right)a^2}{\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)}\)

\(=\frac{-\left(b+c\right)b^2}{\left(b+c\right)\left(b+c+b-c\right)}+\frac{-\left(c+a\right)c^2}{\left(c+a\right)\left(c+a+c-a\right)}+\frac{-\left(a+b\right)a^2}{\left(a+b\right)\left(a+b+a-b\right)}\)

\(=\frac{-\left(b+c\right)b^2}{2b\left(b+c\right)}+\frac{-\left(c+a\right)c^2}{2c\left(c+a\right)}+\frac{-\left(a+b\right)a^2}{2a\left(a+b\right)}\)

\(=\frac{-b}{2}-\frac{c}{2}-\frac{a}{2}=\frac{-\left(b+c+a\right)}{2}\)

Mà a+b+c=0

=> M=0

Vậy M=0

23 tháng 10 2016

Sưả câu 2. a2+b2+c2=3abc