K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2017

A=(3x-3)-(10-6x)

  =3x-3-10+6x

  =6x+3x-3-10

  =9x-13

B=(4x-12)+(4x-2)+(4-3x)

  =4x-12+4x-2+3-3x

  =5x-11

15 tháng 8 2017

Bài 2 :

Câu a : \(y\left(y^3+y^2-y-2\right)-\left(y^2-2\right)\left(y^2+y+1\right)\)

\(=y^4+y^3-y^2-2y-y^4-y^3-y^2+2y^2+2y+2\)

\(=2\) \(\Rightarrow\) ko phụ thuộc vào biến .

Câu b : \(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)

\(=8x^3-12x^2+18x+12x^2-18x+27-8x^3+2\)

\(=29\Rightarrow\) ko thuộc vào biến

Câu c : \(3x\left(x+5\right)-\left(3x+18\right)\left(x-1\right)\)

\(=3x^2+15x-3x^2+3x-18x+18\)

\(=18\) \(\Rightarrow\) ko thuộc vào biến

Câu d : \(\left(2x+6\right)\left(4x^2-12x+36\right)-8x^3+5\)

\(=8x^3-24x^2+72x+24x^2-72x+216-8x^3+5\)

\(=221\) \(\Rightarrow\) không thuộc vào biến

16 tháng 8 2017

câu 1) a) \(\left(x^2+2xy+y^2\right)\left(x+y\right)=\left(x+y\right)^2\left(x+y\right)=\left(x+y\right)^3\)

b) \(y\left(y^3+y^2-3y-2\right)+\left(y^2-2\right)\left(y^2+y-1\right)\)

\(=y^4+y^3-3y^2-2y+y^4+y^3-y^2-2y^2-2y+2\)

\(=2y^4+2y^3-6y^2-4y+2=2y\left(y^3+y^2-3y-2\right)+2\)

\(=2y\left(y+2\right)\left(y^2-y-1\right)+2=2\left(y^2+2y\right)\left(y^2-y-1\right)+2\)

\(=2\left(y^2+2y\right)\left(y^2-y-1+1\right)=2\left(y^2+2y\right)\left(y^2-y\right)\)

c) \(6x^2-\left(2x+5\right)\left(3x-2\right)=6x^2-\left(6x^2-4x+15x-10\right)\)

\(\Leftrightarrow6x^2-6x^2+4x-15x+10=-11x+10\)

d) \(\left(2x-1\right)\left(3x+1\right)+\left(3x+4\right)\left(3-2x\right)\)

\(\)\(=6x^2+2x-3x-1+9x-6x^2+12-8x=11\)

e) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)\)

\(=21x-15x^2-35+25x-\left(10x-15x^2+4-6x\right)\)

\(21x-15x^2-35+25x-10x+15x^2-4+6x=42x-39\)

10 tháng 1 2018

1 ) \(\left(x-4\right)^2-25=0\)

\(\Leftrightarrow\left(x-4-5\right)\left(x-4+5\right)=0\)

\(\Leftrightarrow\left(x-9\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-1\end{matrix}\right.\)

2 ) \(\left(x-3\right)^2-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-3+x-1\right)\left(x-3-x+1\right)=0\)

\(\Leftrightarrow-2\left(2x-4\right)=0\)

\(\Leftrightarrow x=2.\)

3 ) \(\left(x^2-4\right)\left(2x+3\right)=\left(x^2-4\right)\left(x-1\right)\)

\(\Leftrightarrow\left(x^2-4\right)\left(2x+3-x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=-4\end{matrix}\right.\)

4 ) \(\left(x^2-1\right)-\left(x+1\right)\left(2-3x\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-1-2+3x\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(4x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{3}{4}\end{matrix}\right.\)

5 ) \(x^3+x^2+x+1=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(loại\right)\\x=-1.\end{matrix}\right.\)

6 ) \(x^3+x^2-x-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

7 ) \(2x^3+3x^2+6x+5=0\)

\(\Leftrightarrow2x^3+2x^2+x^2+x+5x+5=0\)

\(\Leftrightarrow2x^2\left(x+1\right)+x\left(x+1\right)+5\left(x+1\right)=0\)

\(\Leftrightarrow\left(2x^2+x+5\right)\left(x+1\right)=0\)

\(\Leftrightarrow x=-1.\)

8 ) \(x^4-4x^3-19x^2+106x-120=0\)

\(\Leftrightarrow x^4-4x^3-19x^2+76x+30x-120=0\)

\(\Leftrightarrow x^3\left(x-4\right)-19x\left(x-4\right)+30\left(x-4\right)=0\)

\(\Leftrightarrow\left(x^3-19x+30\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left(x^3-8-19x+38\right)\left(x-4\right)\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+4x+23\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

9 ) \(\left(x^2-3x+2\right)\left(x^2+15x+56\right)+8=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+7\right)\left(x+8\right)+8=0\)

\(\Leftrightarrow\left(x^2+7x-x-7\right)\left(x^2+8x-2x-16\right)+8=0\)

\(\Leftrightarrow\left(x^2+6x-7\right)\left(x^2+6x-16\right)+8=0\)

Đặt \(x^2+6x-7=t\)

\(\Leftrightarrow t\left(t-9\right)+8=0\)

\(\Leftrightarrow t^2-9t+8=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=8\\t=1\end{matrix}\right.\)

Khi t = 8 \(\Leftrightarrow x^2+6x-7=8\Leftrightarrow x^2+6x-15\Leftrightarrow\left[{}\begin{matrix}x=-3+2\sqrt{6}\\x=-3-2\sqrt{6}\end{matrix}\right.\)

Khi t = 1 \(\Leftrightarrow x^2+6x-7=1\Leftrightarrow x^2+6x-8=0\Leftrightarrow\left[{}\begin{matrix}x=-3+\sqrt{17}\\x=-3-\sqrt{17}\end{matrix}\right.\)

Vậy ........

15 tháng 12 2022

a: Sửa đề: (x-1)^2-2(x-3)^2+(x-3)^2

=x^2-2x+1+x^2-6x+9-2(x^2-6x+9)

=2x^2-8x+10-2x^2+12x-18=4x-8

b: \(=x^3-3x^2+3x-1+3x^2-3x-\left(x^3+8\right)\)

=x^3-1-x^3-8

=-9

27 tháng 7 2016

bài 1:

a. \((x+1)(x+3) - x(x+2)=7 \)

    \(x^2+ 3x +x +3 - x^2 -2x =7\)

    \(x^2+4x+3-x^2-2x=7\)

\(=> 2x+3=7\)

    \(2x=4\)

    \(x = 2\)

Bài 2:

a)

\((3x-5)(2x+11) -(2x+3)(3x+7) \)

\(= 6x^2 +33x-10x-55-6x^2-14x-9x-10\)

\(= (6x^2-6x^2)+(33x-10x-14x-9x)-(55+10)\)

\(=-65\)

 

\(\)

 

 

27 tháng 7 2016

Hỏi đáp Toán