K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 11 2019

a/ Gọi K (hay L gì đó) có tọa độ \(K\left(0;y\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(4;3\right)\\\overrightarrow{CK}=\left(-5;y-10\right)\end{matrix}\right.\)

Do AB//CK \(\Leftrightarrow\frac{-5}{4}=\frac{y-10}{3}\Rightarrow y=\frac{25}{4}\) \(\Rightarrow K\left(0;\frac{25}{4}\right)\)

b/ Gọi \(J\left(x;0\right)\Rightarrow\overrightarrow{JA}=\left(-1-x;2\right)\) ; \(\overrightarrow{JB}=\left(3-x;5\right)\); \(\overrightarrow{JC}=\left(5-x;10\right)\)

\(\Rightarrow\overrightarrow{JA}-2\overrightarrow{JB}+4\overrightarrow{JC}=\left(13-3x;32\right)\)

\(\Rightarrow T=\left|\overrightarrow{JA}-2\overrightarrow{JB}+4\overrightarrow{JC}\right|=\sqrt{\left(13-3x\right)^2+32^2}\ge32\)

\(T_{min}=32\) khi \(13-3x=0\Leftrightarrow x=\frac{13}{3}\Rightarrow J\left(\frac{13}{3};0\right)\)

NV
13 tháng 11 2019

c/ Gọi \(Q\left(0;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AQ}=\left(1;y-2\right)\\\overrightarrow{QC}=\left(5;10-y\right)\end{matrix}\right.\)

\(\Rightarrow T=AQ+CQ=\sqrt{1^2+\left(y-2\right)^2}+\sqrt{5^2+\left(10-y\right)^2}\)

\(\Rightarrow T\ge\sqrt{\left(1+5\right)^2+\left(y-2+10-y\right)^2}=10\)

\(T_{min}=10\) khi \(\frac{y-2}{1}=\frac{10-y}{5}\Leftrightarrow y=\frac{10}{3}\Rightarrow Q\left(0;\frac{10}{3}\right)\)

d/ Gọi \(P\left(x;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AP}=\left(x+1;-2\right)\\\overrightarrow{PB}=\left(3-x;5\right)\end{matrix}\right.\)

\(\Rightarrow T=PA+PB=\sqrt{\left(x+1\right)^2+\left(-2\right)^2}+\sqrt{\left(3-x\right)^2+5^2}\)

\(\Rightarrow T\ge\sqrt{\left(x+1+3-x\right)^2+\left(-2+5\right)^2}=5\)

\(T_{min}=5\) khi \(\frac{x+1}{-2}=\frac{3-x}{5}\Rightarrow x=-\frac{11}{3}\Rightarrow P\left(-\frac{11}{3};0\right)\)

NV
12 tháng 11 2019

Bài này có vài cách giải, do M thuộc Oy nên tọa độ đơn giản, dùng công thức khoảng cách là dễ nhất:

Gọi \(M\left(0;a\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(-1;a-2\right)\\\overrightarrow{MB}=\left(2;5-a\right)\end{matrix}\right.\)

\(\Rightarrow T=AM+BM=\sqrt{1^2+\left(a-2\right)^2}+\sqrt{2^2+\left(5-a\right)^2}\)

\(\Rightarrow T\ge\sqrt{\left(1+2\right)^2+\left(a-2+5-a\right)^2}=3\sqrt{2}\)

\(\Rightarrow T_{min}=3\sqrt{2}\) khi \(\frac{a-2}{1}=\frac{5-a}{2}\Rightarrow a=3\Rightarrow M\left(0;3\right)\)

27 tháng 8 2022

tại sao AM = -1 và a-2 bạn nhỉ

 

21 tháng 8 2017

Mọi người giúp em với ạ