Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x+1}+2\sqrt{2x+3}\ge2x+2\)
\(\Leftrightarrow\sqrt{x+1}-2+2\sqrt{2x+3}-6-2x+6\ge0\)
\(\Leftrightarrow\frac{x+1-4}{\sqrt{x+1}+2}+\frac{2\cdot\left(2x+3-9\right)}{\sqrt{2x+3}+3}-2\left(x-3\right)\ge0\)
\(\Leftrightarrow\frac{x-3}{\sqrt{x+1}+2}+\frac{4\cdot\left(x-3\right)}{\sqrt{2x+3}+3}-2\left(x-3\right)\ge0\)
\(\Leftrightarrow\left(x-3\right)\cdot\left(\frac{1}{\sqrt{x+1}+2}+\frac{4}{\sqrt{2x+3}+3}-2\right)\ge0\)
Xét \(\frac{1}{\sqrt{x+1}+2}+\frac{4}{\sqrt{2x+3}+3}-2=\frac{\sqrt{x+\frac{3}{2}}\cdot\sqrt{x+1}+\sqrt{\frac{x+1}{2}}+\frac{3}{2}\sqrt{x+\frac{3}{2}}+\frac{1}{2\sqrt{2}}}{\left(\sqrt{x+1}+2\right)\left(\sqrt{2x+3}+3\right)}\ge0\)
Do đó \(x-3\ge0\Leftrightarrow x\ge3\)
Vậy...
ĐKXĐ: \(x\ge\frac{2}{3}\)
\(\sqrt{x+3}-\sqrt{2x-1}=\sqrt{3x-2}\)
\(\Leftrightarrow\sqrt{x+3}=\sqrt{2x-1}+\sqrt{3x-2}\)
\(\Leftrightarrow x+3=2x-1+3x-2+2\sqrt{\left(2x-1\right)\left(3x-2\right)}\)
\(\Leftrightarrow3-2x=\sqrt{\left(2x-1\right)\left(3x-2\right)}\) (\(x\le\frac{3}{2}\))
\(\Leftrightarrow\left(3-2x\right)^2=\left(2x-1\right)\left(3x-2\right)\)
\(\Leftrightarrow4x^2-12x+9=6x^2-7x+2\)
\(\Leftrightarrow2x^2+5x-7=0\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-\frac{7}{2}< \frac{2}{3}\left(l\right)\end{matrix}\right.\)
nhầm đề ko bạn
Đề đúng mà bạn