K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
21 tháng 1 2022

\(B=2008+\frac{2007}{2}+\frac{2006}{3}+\frac{2005}{4}+...+\frac{2}{2007}+\frac{1}{2008}\)

\(=1+1+\frac{2007}{2}+1+\frac{2006}{3}+...+1+\frac{1}{2008}\)

\(=\frac{2009}{2009}+\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2008}\)

\(=2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}+\frac{1}{2009}\right)\)

Suy ra \(A=2009\).

1 tháng 4 2016

2008-1/2008=2007/2008

1/2-1/2009=2007/2009

4 tháng 2 2016

Kết quả bằng 2009

4 tháng 2 2016

Xét tử

2008+2007/2+2006/3+2005/4+ ... +2/2007+1/2008

=(1+1+1+...+1)+2007/2+2006/3+2005/4+ ... +2/2007+1/2008

= 1+ (2007/2)+1+(2006/3)+1+(2005/4)+1+ ... + (2/2007)+1+(1/2008)+1

=2009/2009+2009/2+2009/3+2009/4+ ... + 2009/2007 + 2009/2008

=2009.(1/2+1/3+1/4+ ... + 1/2007+1/2008+1/2009)

15 tháng 3 2017

2009 nha

2009 ???

-_-

23 tháng 10 2016

Gọi a là tử số, b là mẫu số của phân số A

a = \(\frac{2008}{1}\)\(\frac{2007}{2}\)\(\frac{2006}{3}\)+ ... + \(\frac{1}{2008}\)

Dãy số a có (2008 - 1)  : 1 + 1 = 2008 số. Và a = ( \(\frac{2008}{1}\)\(\frac{1}{2008}\)) x (2008 : 2) 

b = \(\frac{1}{2}\)\(\frac{1}{3}\)\(\frac{1}{4}\)+ ... + \(\frac{1}{2009}\)

Dãy số b có (2009 - 2) : 1 + 1 = 2008 số. Và b = (\(\frac{1}{2}\)\(\frac{1}{2009}\)) x (2008 : 2)

A = [ ( \(\frac{2008}{1}\)\(\frac{1}{2008}\)) x (2008 : 2)] : [ (\(\frac{1}{2}\)\(\frac{1}{2009}\)) x (2008 : 2)] = ( \(\frac{2008}{1}\)\(\frac{1}{2008}\)) :  (\(\frac{1}{2}\)\(\frac{1}{2009}\)

A = \(\frac{\text{2008 x2008 + 1}}{2008}\)\(\frac{2x2009+2}{2x2009}\)

A = 2008

29 tháng 3 2015

\(A=\frac{2008+\frac{2007}{2}+\frac{2006}{3}+\frac{2005}{4}+...+\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}}\)

\(=\frac{\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+\left(1+\frac{2005}{4}\right)+...+\left(1+\frac{1}{2007}\right)+\left(1+\frac{1}{2008}\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}}\)

\(=\frac{\frac{2009}{2}+\frac{2009}{3}+\frac{2009}{4}+...+\frac{2009}{2007}+\frac{2009}{2008}+\frac{2009}{2009}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}}\)

\(=\frac{2009\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}}=2009\)

29 tháng 8 2015

Xét tử ta có:

\(2008+\frac{2007}{2}+\frac{2006}{3}+....+\frac{1}{2008}\)

\(1+\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+...+\left(1+\frac{1}{2008}\right)\)

\(\frac{2009}{2009}+\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2008}\)

\(2009.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2009}\right)\)

=> A = \(\frac{2009.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2009}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2009}}\)

=> A = 2009

 

29 tháng 8 2015

A=\(\frac{\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+\left(1+\frac{2005}{4}\right)+...........+\left(1+\frac{2}{2008}\right)+\left(1+\frac{1}{2009}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{2008}+\frac{1}{2009}}\)=\(\frac{\frac{2009}{2}+\frac{2009}{3}+\frac{2009}{4}+....+\frac{2009}{2008}+\frac{2009}{2009}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}}\frac{ }{ }\)  

                                                                                                               =\(\frac{2009\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2008}+\frac{1}{2009}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2008}+\frac{1}{2009}}\frac{ }{ }\) 

                                                                                                                =2009 

Vay A=2009