K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2017
ko biết

giả sử (a1-b1)(a2-b2)(a3-b3)...(a15-b15) là số lẻ

=>a1-b1;a2-b2;...;a15-b15 là số lẻ

=>a1-b1+a2-b2+...+a15-b15 là số lẻ  (1) (vì có 16 cặp số lẻ)

mà a1-b1+a2-b2+...+a15-b15=(a1+a2+...+a15)-(b1+b2+...+b15)=0 là số chẵn (2)

=>(1) và (2) mâu thuẫn nhau 

=>(a1-b1)(a2-b2)(a3-b3)...(a15-b15) là số chẵn

=>đpcm

5 tháng 6 2015

Xét tổng:

\(\left(a_1-b_1\right)+\left(a_2-b_2\right)+...+\left(a_7-b_7\right)\)

\(=\left(a_1+a_2+...+a_7\right)-\left(b_1+b_2+...+b_7\right)\)

Vì  a1;a2;a3;...;a15 và b1;b2;b3;...;b15 cũng là các số nguyên đó nhưng theo thứ tự khác nên 

=> \(\left(a_1-b_1\right)+\left(a_2-b_2\right)+...+\left(a_7-b_7\right)=0\)

Suy ra ít nhất có 1 trong 7 số là số chẵn, vì nếu cả 7 số đều lẻ thì tổng của 7 số lẻ là 1 số và do đó nó khác 0.

Nếu 1 trong 7 số là số chẵn thì tích 7 số đó:

\(\left(a_1-b_1\right)+\left(a_2-b_2\right)+...+\left(a_7-b_7\right)\)là số chẵn

18 tháng 3 2019

Ta có: \(\frac{a}{b}\)luôn bé hơn \(\frac{a+n}{b+n}\)nếu a < b (a ; b ; thuộc Z ; n thuộc N*)

Thêm 1 vào tử và mẫu của mỗi phân số trên, ta có:

\(A< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}.\left(...\right).\frac{100}{101}\)

=>\(A^2< \frac{1.2.3.\left(...\right).100}{2.3.4.\left(...\right).101}=\frac{1}{101}\)(nhân cả 2 vế cho A)

Quy tắc:\(\left(\frac{a}{b}\right)^2=\frac{a^2}{b^2}\)

=>\(A^2< \frac{1}{101}< \frac{1}{100}=\frac{1^2}{10^2}=\left(\frac{1}{10}\right)^2\)

=>\(A< \frac{1}{10}\)                                (1)

Giữ nguyên \(\frac{1}{2}\), bớt đi ở tử và mẫu của các phân số còn lại, ta có:

\(A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}.\left(...\right).\frac{98}{99}\)

=>\(A^2>\frac{1}{2}.\frac{1}{2}.\frac{2}{3}.\left(...\right)\frac{99}{100}\)(nhân cả 2 vế cho A)

=>\(A^2>\frac{1}{2}.\frac{1.2.3.\left(...\right).99}{2.3.4.\left(...\right).100}=\frac{1}{2}.\frac{1}{100}=\frac{1}{200}\)

\(\left(\frac{1}{15}\right)^2=\frac{1}{225}< \frac{1}{200}< A^2\)

=>\(\frac{1}{15}< A\)                            (2)

Từ (1) và (2) => \(\frac{1}{15}< A< \frac{1}{10}\)(đpcm)