K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2015

        A=1+2+3+4+...+1502

=>\(A=\frac{1502.\left(1502+1\right)}{2}\)

=>\(A=\frac{1502.1503}{2}\)

=>\(A=\frac{2257506}{2}\)

=>\(A=1128753\)

l-i-k-e cho mình nha bạn.

27 tháng 6 2015

Số số hạng có trong dãy số trên là:

(1502 - 1) : 1 + 1 = 1502 (số)

Tổng trên là:

(1502 + 1) x 1502 : 2 = 1128753

Đáp số: 1128573

3 tháng 8 2017

\(\left(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{3001.3004}\right)\cdot\left(x+1\right)=\frac{9009}{1502}\)

\(\Leftrightarrow\frac{2}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{3001}-\frac{1}{3004}\right)\cdot\left(x+1\right)=\frac{9009}{1502}\)

\(\Leftrightarrow\frac{2}{3}\cdot\left(1-\frac{1}{3004}\right)\cdot\left(x+1\right)=\frac{9009}{1502}\)

\(\Leftrightarrow\frac{2}{3}\cdot\frac{3003}{3004}\cdot\left(x+1\right)=\frac{9009}{1502}\)

\(\Leftrightarrow\frac{1001}{1502}\cdot\left(x+1\right)=\frac{9009}{1502}\)

\(\Leftrightarrow x+1=\frac{9009}{1502}\div\frac{1001}{1502}\)

\(\Leftrightarrow x+1=9\Rightarrow x=8\)

2 tháng 6 2018

a) \(A=98+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\)(có 98 phân số nên ta cộng 1 vào mỗi phân số)

\(A=\left(\frac{1}{2}+1\right)+\left(\frac{1}{3}+1\right)+...+\left(\frac{1}{99}+1\right)\)

\(A=\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}\)

Và \(B=\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}\)

\(\Rightarrow\frac{A}{B}=\frac{\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}}{\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}}=1\)

b) \(A=2018+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\)(có 2018 phân số nên ta cộng 1 vào mỗi phân số)

\(A=\left(\frac{1}{2}+1\right)+\left(\frac{1}{3}+1\right)+...+\left(\frac{1}{2019}+1\right)\)

\(A=\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}\)

Và \(B=\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}\)

\(\Rightarrow\frac{A}{B}=\frac{\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}}{\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}}=1\)

c) \(A=\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}\)

\(A=99+\frac{98}{2}+...+\frac{1}{99}\)(có 98 phân số nên ta cộng 1 vào từng phân số)

\(A=\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{1}{99}+1\right)+1\)

\(A=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+1\)

\(A=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)\)

Và \(B=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\)

\(\Rightarrow\frac{A}{B}=\frac{100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}}=100\)

2 tháng 6 2018

a)\(B=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+...+\frac{100}{99}\)

\(B=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{99}\right)\)

\(\Rightarrow B=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}\right)\)

\(\Rightarrow B=98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}\)

\(\Rightarrow A:B=\frac{A}{B}=\frac{98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}{98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}=1.\)

Vậy \(A:B=1.\)

b)\(B=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{2019}\right)\)

\(\Rightarrow B=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right)\)

\(\Rightarrow B=2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\)

\(\Rightarrow A:B=\frac{A}{B}=\frac{2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}}{2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}}=1.\)

Vậy \(A:B=1.\)

c)\(A=\left(1+1+...+1\right)+\frac{98}{2}+\frac{97}{3}+...+\frac{2}{98}+\frac{1}{99}\)

\(A=\left(1+\frac{98}{2}\right)+\left(1+\frac{97}{3}\right)+...+\left(1+\frac{2}{98}\right)+\left(1+\frac{1}{99}\right)\)

\(A=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{98}+\frac{100}{99}\)

\(A=100\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}\right)\)

\(\Rightarrow A:B=\frac{A}{B}=\frac{100\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}}=1.\)

Vậy \(A:B=1.\)

18 tháng 9 2021

YÊU TỚ ĐI RỒI TỐ NOI

18 tháng 9 2021

yêu khiểu gì được

14 tháng 9 2021

a)\(\dfrac{2}{3}.\dfrac{4}{5}+\dfrac{1}{3}.\dfrac{4}{5}=\left(\dfrac{2}{3}+\dfrac{1}{3}\right).\dfrac{4}{5}=1.\dfrac{4}{5}=\dfrac{4}{5}\)

b)\(\dfrac{2}{3}.\dfrac{4}{5}-\dfrac{1}{3}.\dfrac{4}{5}=\left(\dfrac{2}{3}-\dfrac{1}{3}\right).\dfrac{4}{5}=\dfrac{1}{3}.\dfrac{4}{5}=\dfrac{4}{15}\)

14 tháng 9 2021

a) \(\dfrac{2}{3}\times\dfrac{4}{5}+\dfrac{1}{3}\times\dfrac{4}{5}=\dfrac{4}{5}\times\left(\dfrac{2}{3}+\dfrac{1}{3}\right)=\dfrac{4}{5}\times1=\dfrac{4}{5}\)

b) \(\dfrac{2}{3}\times\dfrac{4}{5}-\dfrac{1}{3}\times\dfrac{4}{5}=\dfrac{4}{5}\times\left(\dfrac{2}{3}-\dfrac{1}{3}\right)=\dfrac{4}{5}\times\dfrac{1}{3}=\dfrac{4}{15}\)

c) \(\dfrac{1}{2}:\dfrac{3}{4}+\dfrac{1}{6}:\dfrac{3}{4}=\dfrac{1}{2}\times\dfrac{4}{3}+\dfrac{1}{6}\times\dfrac{4}{3}=\dfrac{4}{3}\times\left(\dfrac{1}{2}+\dfrac{1}{6}\right)=\dfrac{4}{3}\times\dfrac{2}{3}=\dfrac{8}{9}\)

d) \(\dfrac{1}{2}:\dfrac{3}{4}-\dfrac{1}{6}:\dfrac{3}{4}=\dfrac{1}{2}\times\dfrac{4}{3}-\dfrac{1}{6}\times\dfrac{4}{3}=\dfrac{4}{3}\left(\dfrac{1}{2}-\dfrac{1}{6}\right)=\dfrac{4}{3}\times\dfrac{1}{3}=\dfrac{4}{9}\)