Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-3}{97}+\frac{x-4}{96}=4\)
\(\Rightarrow\frac{x-1}{99}-1+\frac{x-2}{98}-1+\frac{x-3}{97}-1+\frac{x-3}{96}-1=4-4\)
\(\Rightarrow\frac{x-100}{99}+\frac{x-100}{98}+\frac{x-100}{97}+\frac{x-100}{96}=0\)
\(\Rightarrow\left(x-100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\right)=0\)
\(\Rightarrow x-1=0\) ( vì \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\ne0\) )
Vậy x = 1
b) \(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}=3\)
\(\Rightarrow\frac{x+1}{99}+1+\frac{x+2}{98}+1+\frac{x+3}{97}+1=3-3\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}=0\)
\(\Rightarrow\left(x+100\right).\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}\right)=0\)
Vì \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}\ne0\)
=> x + 100 = 0
=> x = -100
c) \(\frac{x-1}{99}+\frac{x-2}{49}+\frac{x-4}{32}=6\)
\(\Rightarrow\frac{x-1}{99}-1+\frac{x-2}{49}-2+\frac{x-4}{32}-3=6-6\)
\(\Rightarrow\frac{x-100}{99}+\frac{x-100}{49}+\frac{x-100}{32}=0\)
\(\Rightarrow\left(x-100\right)\left(\frac{1}{99}+\frac{1}{49}+\frac{1}{32}\right)=0\)
Vì \(\frac{1}{99}+\frac{1}{49}+\frac{1}{32}\ne0\)
=> x - 100 = 0
=> x = 100
Chúc bạn học tốt
có người khác trả lời trước rồi nên chị ko trả lời đâu nhé em trai
\(A=\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+\frac{4}{96}+...+\frac{98}{2}+\frac{99}{1}\)
\(A=1+\left(\frac{1}{99}+1\right)+\left(\frac{2}{98}+1\right)+\left(\frac{3}{97}+1\right)+\left(\frac{4}{96}+1\right)+...+\left(\frac{98}{2}+1\right)\)
\(A=\frac{100}{100}+\frac{100}{99}+\frac{100}{98}+\frac{100}{97}+\frac{100}{96}+...+\frac{100}{2}\)
\(A=100.\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}\right)\)
\(\Rightarrow\frac{A}{B}=\frac{100\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}=100\)
Ta có \(1\frac{1}{5}x+\frac{2}{3}x=-\frac{56}{125}\)
<=> \(\frac{6}{5}x+\frac{2}{3}x=-\frac{56}{125}\)
<=> \(\frac{28}{15}x=-\frac{56}{125}\)
<=> \(x=-\frac{2}{15}\)
b) \(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}+\frac{x+4}{96}=-4\)
<=> \(\left(\frac{x+1}{99}+1\right)+\left(\frac{x+2}{98}+1\right)+\left(\frac{x+3}{97}+1\right)+\left(\frac{x+4}{96}+1\right)=0\)
<=> \(\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}+\frac{x+100}{96}=0\)
<=> \(\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\right)=0\)
<=> x + 100 = 0
<=> x = -100
1)
A) 1+ (-2)+ 3+ (-4)+...+19+(-20)
<=> -1+(-1)+...+(-1)
có tất cả 10 số (-1) => -1*10= -10
B)1-2+3-4+...+99-100
<=> -1+(-1)+...+(-1)
Có tất cả 50 số (-1) =>-1*50=(-50)
Công thức tính tổng:
B1:SCSH:( cuối - đầu ) : khoảng cách + 1 = ? ( số hạng )
B2:Tổng:( cuối + đầu ) . SCSH : 2 = ?
Hk tốt
\(A=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}........\frac{2010}{2009}=\frac{3.4.5...2010}{2.3.4....2009}=\frac{2010}{2}=1005\)
\(B=\frac{1.2.3......99}{1.2.3.4.....100}=\frac{1}{100}\)