Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2015^{2014}+1}{2015^{2014}-1}=\frac{2015^{2014}-1+2}{2015^{2014}-1}=1+\frac{2}{2015^{2014}-1}.\)
\(B=\frac{2015^{2014}-1}{2015^{2014}-3}=\frac{2015^{2014}-3+2}{2015^{2014}-3}=1+\frac{2}{2015^{2014}-3}\)
mà \(\frac{2}{2015^{2014}-1}< \frac{2}{2015^{2014}-3}\)( 20152014 -1 > 20152014 - 3)
\(\Rightarrow A< B\)
\(\frac{A}{2}=\frac{2^{2015}+1}{2\left(2^{2014}+1\right)}=\frac{2^{2015}+1}{2^{2015}+2}=\frac{2^{2015}+2-1}{2^{2015}+2}=1-\frac{1}{2^{2015}+2}\)
\(\frac{A}{2}=\frac{2^{2016}+1}{2\left(2^{2015}+1\right)}=\frac{2^{2016}+1}{2^{2016}+2}=\frac{2^{2016}+2-1}{2^{2016}+2}=1-\frac{1}{2^{2016}+}\)
Vì \(1-\frac{1}{2^{2015}+2}< 1-\frac{1}{2^{2016}+2}\Rightarrow\frac{A}{2}< \frac{B}{2}\)
\(\Rightarrow A< B\)