Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GIả sử trong 50 số không có 2 số nào bằng nhau. Cho a1>a2>a3>....>a50, do a1,a2,...,a50 là các số tự nhiên
\(\Rightarrow a_{50}\ge1,a_{49}\ge2,...,a_1\ge50.\)
\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{50}}\le1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\)
\(\Leftrightarrow VT\le\left(1+\frac{1}{2}+...+\frac{1}{10}\right)+\left(\frac{1}{11}+...+\frac{1}{20}\right)\)\(+\left(\frac{1}{21}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+...+\frac{1}{40}\right)\)
\(+\left(\frac{1}{41}+...+\frac{1}{50}\right)\) (mỗi nhóm có 10 số hạng)
\(VT< 10+\frac{10}{11}+\frac{10}{21}+\frac{10}{31}+\frac{10}{41}< 10+1+\frac{1}{2}\)\(+\frac{1}{3}+\frac{1}{4}=\frac{145}{12}< \frac{51}{2}\)
=> Vô lí
=> đpcm
Giả sử \(a_1;a_2;a_3;a_4;........;a_{50}\) là 50 số tự nhân khác nhau và \(0< a_1< a_2< a_3< ........< a_{50}\)
\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+\frac{1}{a_4}+.....+\frac{1}{a_{50}}\le\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{50}\)
\(< 1+\frac{1}{2}+\frac{1}{2}+....+\frac{1}{2}=1+\frac{49}{2}=\frac{51}{2}\) (mâu thuẫn giả thiết)
\(\Rightarrow\)Trong 50 số trên có ít nhất 2 số bằng nhau
a) Số số hạng là :
( 50 - 1 ) : 1 + 1 = 50 ( số )
Tổng là :
( 50 + 1 ) x 50 : 2 = 1275
Đáp số : 1275
b) không hiểu
Vì 1/2 x 2 hay 1/3 x 3 đều bằng 1 nên ta có cách tính như sau :
Số các số hạng của dãy là :
(50 - 1) : (2 - 1) + 1 =50 (số)
A là :
1 x 50 = 50
Đáp số: A = 50