K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2020

Ta có : \(\frac{x-12}{77}+\frac{x-11}{78}=\frac{x-74}{15}+\frac{x-73}{16}\)

\(\Rightarrow\frac{x-12}{77}-1+\frac{x-11}{78}-1=\frac{x-74}{15}-1+\frac{x-73}{16}-1\)

\(\Rightarrow\frac{x-89}{77}+\frac{x-89}{78}=\frac{x-89}{15}+\frac{x-89}{16}\Rightarrow\left(x-89\right).\left(\frac{1}{77}+\frac{1}{78}\right)=\left(x-89\right).\left(\frac{1}{15}+\frac{1}{16}\right)\)

=> \(\left(x-89\right).\left(\frac{1}{77}+\frac{1}{78}\right)-\left(x-89\right)\left(\frac{1}{15}+\frac{1}{16}\right)=0\)

=> \(\left(x-89\right).\left[\left(\frac{1}{77}+\frac{1}{78}-\frac{1}{15}-\frac{1}{16}\right)\right]=0\Rightarrow x-89=0\left(\text{vì }\frac{1}{77}+\frac{1}{78}-\frac{1}{15}-\frac{1}{16}\ne0\right)\)

=> x = 89

Vậy x = 89

6 tháng 4 2018

easy làm câu b vs c trước nha

b) \(\left(x-5\right)\left(2x+4\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-5>0\\2x+4>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-5< 0\\2x+4< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>5\\x>-2\end{matrix}\right.\\\left\{{}\begin{matrix}x< 5\\x< -2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>5\\x< -2\end{matrix}\right.\)

Vậy......

c) \(\left(x+3\right)\left(3x-6\right)< 0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3>0\\3x-6< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3< 0\\3x-6>0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-3\\x< 2\end{matrix}\right.\\\left\{{}\begin{matrix}x< -3\\x>2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3< x< 2\\x\in\varnothing\end{matrix}\right.\)

Vậy.......

6 tháng 4 2018

- Vậy còn câu a ?

3 tháng 2 2020

g) \(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\)

\(\Leftrightarrow\left(\frac{x+2}{98}+1\right)+\left(\frac{x+4}{96}+1\right)=\left(\frac{x+6}{94}+1\right)+\left(\frac{x+8}{92}+1\right)\)

\(\Leftrightarrow\left(\frac{x+2+98}{98}\right)+\left(\frac{x+4+96}{96}\right)=\left(\frac{x+6+94}{94}\right)+\left(\frac{x+8+92}{92}\right)\)

\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{96}=\frac{x+100}{94}+\frac{x+100}{92}\)

\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{96}-\frac{x+100}{94}-\frac{x+100}{92}=0\)

\(\Leftrightarrow\left(x+100\right).\left(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\right)=0\)

\(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\ne0.\)

\(\Leftrightarrow x+100=0\)

\(\Leftrightarrow x=0-100\)

\(\Leftrightarrow x=-100.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{-100\right\}.\)

h) \(\frac{x-12}{77}+\frac{x-11}{78}=\frac{x-74}{15}+\frac{x-73}{16}\)

\(\Leftrightarrow\left(\frac{x-12}{77}-1\right)+\left(\frac{x-11}{78}-1\right)=\left(\frac{x-74}{15}-1\right)+\left(\frac{x-73}{16}-1\right)\)

\(\Leftrightarrow\left(\frac{x-12-77}{77}\right)+\left(\frac{x-11-78}{78}\right)=\left(\frac{x-74-15}{15}\right)+\left(\frac{x-73-16}{16}\right)\)

\(\Leftrightarrow\frac{x-89}{77}+\frac{x-89}{78}=\frac{x-89}{15}+\frac{x-89}{16}\)

\(\Leftrightarrow\frac{x-89}{77}+\frac{x-89}{78}-\frac{x-89}{15}-\frac{x-89}{16}=0\)

\(\Leftrightarrow\left(x-89\right).\left(\frac{1}{77}+\frac{1}{78}-\frac{1}{15}-\frac{1}{16}\right)=0\)

\(\frac{1}{77}+\frac{1}{78}-\frac{1}{15}-\frac{1}{16}\ne0.\)

\(\Leftrightarrow x-89=0\)

\(\Leftrightarrow x=0+89\)

\(\Leftrightarrow x=89.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{89\right\}.\)

Chúc bạn học tốt!

3 tháng 2 2020

Câu g) bạn cộng 1 vào mỗi hạng tử của 2 vế

Câu h) bạn trừ một vào mỗi hạng tử ở hai vế

Quy đồng mẫu thì được tử giống nhau sau đó đặt nhân tử chung là xong

1 tháng 8 2021

\(\dfrac{x-12}{77}+\dfrac{x-11}{78}=\dfrac{x-74}{15}+\dfrac{x-73}{16}\)

\(\Rightarrow\dfrac{x-12}{77}+\dfrac{x-11}{78}-\dfrac{x-74}{15}-\dfrac{x-73}{16}=0\)

\(\Rightarrow\dfrac{x-12}{77}-1+\dfrac{x-11}{78}-1-\dfrac{x-74}{15}+1-\dfrac{x-73}{16}+1=0+1+1-1-1\)

\(\Rightarrow\left(\dfrac{x-12}{77}-1\right)+\left(\dfrac{x-11}{78}-1\right)-\left(\dfrac{x-74}{15}-1\right)-\left(\dfrac{x-73}{16}-1\right)=0\)

\(\Rightarrow\dfrac{x-89}{77}+\dfrac{x-89}{78}-\dfrac{x-89}{15}-\dfrac{x-89}{16}=0\)

\(\Rightarrow\left(x-89\right)\left(\dfrac{1}{77}+\dfrac{1}{78}-\dfrac{1}{15}-\dfrac{1}{16}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-89=0\\\dfrac{1}{77}+\dfrac{1}{78}-\dfrac{1}{15}-\dfrac{1}{16}=0\end{matrix}\right.\)

\(x-89=0\\ \Rightarrow x=89\)

\(\dfrac{1}{77}+\dfrac{1}{78}-\dfrac{1}{15}-\dfrac{1}{16}=0\)(vô lí)

Vậy \(x=89\)

 

29 tháng 12 2019

Violympic toán 8

29 tháng 12 2017

a,\(\dfrac{x+1}{65}+\dfrac{x+2}{64}=\dfrac{x+3}{63}+\dfrac{x+4}{62}\)

\(\Rightarrow\dfrac{x+1}{65}+1+\dfrac{x+2}{64}+1=\dfrac{x+3}{63}+1+\dfrac{x+4}{62}\)

\(\Rightarrow\dfrac{x+1+65}{65}+\dfrac{x+2+64}{64}=\dfrac{x+3+63}{63}+\dfrac{x+4+62}{62}\)

\(\Rightarrow\dfrac{x+66}{65}+\dfrac{x+66}{64}-\dfrac{x+66}{63}-\dfrac{x+66}{62}=0\)

\(\Rightarrow\left(x+66\right)\left(\dfrac{1}{65}+\dfrac{1}{64}-\dfrac{1}{63}-\dfrac{1}{62}\right)=0\)

\(\Rightarrow x+66=0\) ( vì \(\dfrac{1}{65}+\dfrac{1}{64}-\dfrac{1}{63}-\dfrac{1}{62}>0\) )

\(\Rightarrow x=-66\)

\(b,\dfrac{x-12}{77}+\dfrac{x-11}{78}=\dfrac{x-74}{15}+\dfrac{x-73}{16}\)

\(\Rightarrow\dfrac{x-12}{77}-1+\dfrac{x-11}{78}-1=\dfrac{x-74}{15}-1+\dfrac{x-73}{16}-1\)

\(\Rightarrow\dfrac{x-12-77}{77}+\dfrac{x-11-78}{78}=\dfrac{x-74-15}{15}+\dfrac{x-73-16}{16}\)

\(\Rightarrow\dfrac{x-89}{77}+\dfrac{x-89}{78}-\dfrac{x-89}{15}-\dfrac{x-89}{16}=0\)

\(\Rightarrow\left(x-89\right)\left(\dfrac{1}{77}+\dfrac{1}{78}-\dfrac{1}{15}-\dfrac{1}{16}\right)=0\)

\(\Rightarrow x-89=0\)

\(\Rightarrow x=89\)

29 tháng 12 2017

b.

\(\dfrac{x-12}{77}+\dfrac{x-11}{78}=\dfrac{x-74}{15}+\dfrac{x-73}{16}\\ \Rightarrow\left(\dfrac{x-12}{77}-1\right)+\left(\dfrac{x-11}{78}-1\right)=\left(\dfrac{x-74}{15}-1\right)+\left(\dfrac{x-73}{16}-1\right)\\ \Leftrightarrow\dfrac{x-89}{77}+\dfrac{x-89}{78}=\dfrac{x-89}{15}+\dfrac{x-89}{16}\\ \Leftrightarrow\dfrac{x-89}{77}+\dfrac{x-89}{78}-\dfrac{x-89}{15}-\dfrac{x-89}{16}=0\\ \\ \Leftrightarrow\left(x-89\right)\left(\dfrac{1}{77}+\dfrac{1}{78}-\dfrac{1}{15}-\dfrac{1}{16}\right)=0\\ \Leftrightarrow x-89=0\\ \Leftrightarrow x=89\)

19 tháng 5 2016

chị mk mới bày 

\(\frac{x-12}{77}+\frac{x-11}{78}=\frac{x-74}{15}+\frac{x-73}{16}\)

\(\Leftrightarrow\left(\frac{x-12}{77}-1\right)+\left(\frac{x-11}{78}-1\right)=\left(\frac{x-74}{15}-1\right)+\left(\frac{x-73}{16}-1\right)\)

\(\Leftrightarrow\frac{x-12-77}{77}+\frac{x-11-78}{78}=\frac{x-74-15}{15}+\frac{x-73-16}{16}\)

\(\Leftrightarrow\frac{x-89}{77}+\frac{x-89}{78}=\frac{x-89}{15}+\frac{x-89}{16}\)

\(\Leftrightarrow\frac{x-89}{77}+\frac{x-89}{78}=\frac{x-89}{15}+\frac{x-89}{16}=0\)

\(\Leftrightarrow\left(x-89\right)\left(\frac{1}{77}+\frac{1}{78}-\frac{1}{15}-\frac{1}{16}\right)=0\)

\(\Leftrightarrow x-89=0\)

\(\Leftrightarrow x=89\)

19 tháng 5 2016

bạn sai đề hả? mình nghĩ là \(\frac{x-74}{75}+\frac{x-73}{76}\) câu này mình có làm rồi

c: Ta có: \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)

\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28\)

\(\Leftrightarrow3x^2+26x=0\)

\(\Leftrightarrow x\left(3x+26\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{26}{3}\end{matrix}\right.\)

23 tháng 9 2021

\(a,\Leftrightarrow x^2+8x+16-x^3-12x^2=16\\ \Leftrightarrow x^3+11x^2-8x=0\\ \Leftrightarrow x\left(x^2+11x-8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+11x-8=0\left(1\right)\end{matrix}\right.\\ \Delta\left(1\right)=121+32=153\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-11-3\sqrt{17}}{2}\\x=\dfrac{-11+3\sqrt{17}}{2}\end{matrix}\right.\\ S=\left\{0;\dfrac{-11-3\sqrt{17}}{2};\dfrac{-11+3\sqrt{17}}{2}\right\}\)

\(c,\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28\\ \Leftrightarrow3x^2+26x=0\\ \Leftrightarrow x\left(3x+26\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{26}{3}\end{matrix}\right.\\ d,\Leftrightarrow x^3-6x^2+12x-8-x^3-125-6x^2=11\\ \Leftrightarrow-12x^2+12x-144=0\\ \Leftrightarrow x^2-x+12=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=3\end{matrix}\right.\)