Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{x}{19}=\frac{y}{5}=\frac{z}{95}\); 5x-y-z=-10
biến đổi:
\(\frac{x}{19}=\frac{5x}{95}\)
=> \(\frac{x}{19}=\frac{y}{5}=\frac{z}{95}\)
(=) \(\frac{5x}{95}=\frac{y}{5}=\frac{z}{95}\)
= \(\frac{5x-y-z}{95-5-95}\)
= \(\frac{-10}{-5}=2\)
* \(\frac{x}{19}=2\)=> \(x=19.2=38\)
* \(\frac{y}{5}=2\)=> \(y=2.5=10\)
* \(\frac{z}{95}=2\)=> \(z=95.2=190\)
BÀI 1:
A) THAY X =2 ; Y= 1/3 VÀO BIỂU THỨC
2. ( 2+ 2) + 1/3. ( 1/3 + 3) + 2^2 + 2. (1/3) ^2 + 4. 1/3
= 2.4 + 1/3 . 10/3+ 4+ 2. 1/9 + 4/3
= 8+ 10/9 + 4+ 2/9 + 4/3
= 44/3
B) THAY X= 2; Y= 1/3 VÀO BIỂU THỨC
( 2 + 1/3 ) . 2 + ( 2- 1/3 ) . 2
= 7/3 . 2 + 5/3 . 2
= 7/6 + 10/3
= 9/2
C) TA CÓ: ( X+ Y) X + ( X+Y ) X= 2. X.( X+Y)
THAY X= 2; Y= 1/3 VÀO BIỂU THỨC
2. 2.( 2+ 1/3)
= 4. 7/3
= 28/3
BÀI 2:
A) \(\left(x^2+6x+5\right)+\left(-3x+9\right)=x^2+6x+5-3x+9\)
\(=\left(6x-3x\right)+\left(5+9\right)+x^2\)
\(=3x+14+x^2\)
B) \(\left(2x^2+3x+7\right)-\left(-2x+5\right)=2x^2+3x+7+2x-5\)
\(=2x^2+\left(3x+2x\right)+\left(7-5\right)\)
\(=2x^2+5x+2\)
C) \(\left(6x^2y-6xy^2\right)+\left(7xy+4xy^2-x^2y\right)=6x^2y-6xy^2+7xy+4xy^2-x^2y\)
\(=\left(6x^2y-x^2y\right)+\left(4xy^2-6xy^2\right)+7xy\)
\(=5x^2y+\left(-2xy^2\right)+7xy\)
CHÚC BN HỌC TỐT!!!!
Câu 1 : \(\frac{x}{2}=\frac{2y}{5}=\frac{4z}{7}\)\(\Rightarrow\)\(\frac{1}{4}.\frac{x}{2}=\frac{1}{4}.\frac{2y}{5}=\frac{1}{4}.\frac{4z}{7}\)\(\Leftrightarrow\)\(\frac{x}{8}=\frac{y}{10}=\frac{z}{7}\) \(\Rightarrow\)\(\frac{3x}{24}=\frac{5y}{50}=\frac{7z}{49}=\frac{3x+5y+7z}{24+50+49}=\frac{123}{123}=1\)
\(\frac{3x}{24}=1\Rightarrow3x=24\Rightarrow x=8\)
\(\frac{5y}{50}=1\Rightarrow5y=50\Rightarrow y=10\)
\(\frac{7z}{49}=1\Rightarrow7z=49\Rightarrow z=7\)
Vậy x,y,z lần lượt là 8,10,7
Ta có : \(\left(x+2y\right)^2+\left(y-1\right)^2+\left(x-z\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}y-1=0\\x+2y=0\\x-z=0\end{cases}\Rightarrow\hept{\begin{cases}y=1\\x+2.1=0\\x-z=0\end{cases}\Rightarrow}\hept{\begin{cases}y=1\\x=-3\\\left(-3\right)-z=0\end{cases}\Rightarrow}\hept{\begin{cases}y=1\\x=-3\\z=-3\end{cases}}}\)
Ta có : \(\hept{\begin{cases}y=1\\x=-3\\z=-3\end{cases}}\)
Bạn thế vào : \(x+2y+3z\)là ra thôi
Ta có : \(\frac{x}{3}=\frac{y}{5}\)
\(\Rightarrow x=3k\) ; \(y=5k\)
Thay \(x=3k\) và \(y=5k\) vào biểu thức \(x+2y=10\) ta có :
\(3k+2\times5k=10\)
\(3k+10k=10\)
\(\left(3+10\right)k=10\)
\(13k=10\)
\(\Rightarrow k=\frac{10}{13}\)
Vậy :
\(\hept{\begin{cases}x=3k=3\times\frac{10}{13}=\frac{30}{13}\\y=5k=5\times\frac{10}{13}=\frac{50}{13}\end{cases}}\)
Mk ko biết đúng ko, đúng thì k cho mk nha
Đặt x/3=y/5=k
=> x=3k và y=5k
x+2y=10
3k+2.5k=10
3k+10k=10
13k=10
k=10/13
x=3k=3.10/13=30/13
y=5k=5.10/13=50/13