Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình mới lớp 7 nên chỉ giải được 1 bài thôi!
\(3x^2-7x+2=3x^2-\left(6x+1x\right)+2=3x^2-6x-1x+2\)
\(3x\left(x-2\right)-1\left(x-2\right)=\left(x-2\right)\left(3x-1\right)=3\left(x-2\right)\left(x-\frac{1}{3}\right)\)
(x+2)^2-(x-2)(x+2)=0
=> (x+2)(x+2-x+2)=0
=> (x+2).4=0
=> x+2=0
=> x=-2
mấy câu còn lại tự làm nha
a) (x+2)^2-(x-2)(x+2)=0
(x+2).[x+2-x+2]=0
(x+2).4=0
x+2=0
x=-2
b)(2x - 1)^2 - (2x + 5) (2x - 5 ) = 18
4x2-4x+1-4x2+25=18
26-4x=18
4x=8
x=2
c)( 2x - 1)^2 - 25 = 0
( 2x - 1)^2 - 52 = 0
(2x-1-5)(2x-1+5)=0
(2x-6)(2x+4)=0
\(\Rightarrow\orbr{\begin{cases}2x-6=0\\2x+4=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
Bài 1 :
a, \(\left(x^2-2x+3\right)\left(x-4\right)=0\)
TH1 : \(x^2-2x+3=0\)
\(\left(-2\right)^2-4.3=4-12< 0\)vô nghiệm
TH2 : \(x-4=0\Leftrightarrow x=4\)
b, \(\left(2x^2-3x-1\right)\left(5x+2\right)=0\)
TH1 : \(\left(-3\right)^2-4.\left(-1\right).2=9+8=17>0\)
\(\Rightarrow x_1=\frac{3-\sqrt{17}}{4};x_2=\frac{3+\sqrt{17}}{4}\)
TH2 ; \(5x+2=0\Leftrightarrow x=-\frac{2}{5}\)
c, đưa về hệ đc ko ?
d, \(\left(5x^3-x^2+2x-3\right)\left(4x^2-x+2\right)=0\)
TH1 : \(x=0,74...\) ( bấm máy cx ra )
TH2 : \(\left(-1\right)^2-4.2.4< 0\)vô nghiệm
KL : vô nghiệm
Bài 2 :
a, \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)-\left(18x-12\right)\)
\(=6x^2+21x-2x-7-6x^2+5x-6x+5-18x+12=10\)
Vậy biểu thức ko phụ thuộc vào biến
b, \(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)-x^4y^4\)
\(=x^4+x^3y+x^2y^2+xy^3-yx^3-y^2x^2-y^3x-y^4-x^4y^4\)
\(=x^4-y^4-x^4y^4\)Vậy biểu thức phụ thuộc vào biến
1 sai
(a-b).(a+b)=a^2-b^2
2 đúng
3 đúng
4 sai
(x-3)^2=-(3-x)^2
5 sai
(x-3)^3=-(3-x)^3
a) A= (x-3)^2
thay x=203 vào 3, ta có
A=(203-3)^2=200^2=40000
gọi xy=k^2 với k là hằng số.
Ta có: [(x+y)/2]^2 >=xy <=>(x+y)^2 >= 4xy <=> (x+y) >= 2k =>min(x+y)=2k<=>x=y=k.
a)Xét hai số dương tích bằng a( với a là hằng số):
ta có (x+y)^2 >= 4xy=4a <=> x=y
Vì x,y >0 nên x+y nhỏ nhất <=> x=y.
\(A=x^2-2x+9\)
\(=x^2-2x+1+8\)
\(=\left(x-1\right)^2+8\ge8\forall x\)
Dấu '=' xảy ra khi x=1
Bạn ơi câi đó là câu a chứ ko phải A=
Huhu bạn giải lại giúp mình với, mình cần gấp lắm