K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2017

\(\Rightarrow\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1504}\)

\(\Rightarrow\frac{1}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\Rightarrow\frac{x-2}{5x+15}=\frac{303}{1540}\)

\(\Rightarrow x=305\)

24 tháng 11 2017

x = 305 nha bạn . 

4 tháng 8 2019

ĐKXĐ : 101x \(\ge\)0 nên x \(\ge\)0

khi đó : \(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|=101x\)

\(\Leftrightarrow\left(x+\frac{1}{101}\right)+\left(x+\frac{2}{101}\right)+...+\left(x+\frac{100}{101}\right)=101x\)

\(\Leftrightarrow100x+\frac{5050}{101}=101x\Leftrightarrow x=50\)

4 tháng 8 2019

*ĐK : 101x\(\ge\) 0 => x\(\ge\)0

=> \(x+\frac{1}{101}\ge\frac{1}{101}>0\Rightarrow\left|x+\frac{1}{101}\right|=x+\frac{1}{101}\)

     \(x+\frac{2}{101}\ge\frac{2}{101}>0\Rightarrow\left|x+\frac{2}{101}\right|=x+\frac{2}{101}\)

...

\(x+\frac{100}{101}\ge\frac{100}{101}>0\Rightarrow\left|x+\frac{100}{101}\right|=x+\frac{100}{101}\)

Ta có :

\(x+\frac{1}{101}+x+\frac{2}{101}+...+x+\frac{100}{101}=101x\)

<=> \(100x+\left(\frac{1+2+...+100}{101}\right)=101x\)

<=> \(100x+\frac{5050}{101}=101x\)

<=> \(100x-101x=\frac{-5050}{101}\)

<=> -x = -50

=> x = 50 ( t/m x >/ 0)

25 tháng 5 2022

\(f\left(x\right)=x^{10}+101x^9+101x^8-101x^7+...-101x+101\)

\(=x^{10}-100x^9-x^9+100x^8+x^8-100x^7-x^7+....-101x+101\)

\(=x^9.\left(x-100\right)-x^8\left(x-100\right)+x^7\left(x-100\right)-.....+x\left(x-100\right)-\left(x-101\right)\)

\(\Rightarrow f\left(100\right)=1\)

25 tháng 5 2022

Ta có:

`101=100+1=x+1`

`⇒f(x)=x^10 - 101 x^9 +  ... -101x+101`

`⇒ f(100)=  x^10 - (x+1) x^9 + ... -(x+1).x+x+1`

              `=x^10 - x^10 - x^9 + ... -x^2 -x +x+1`

              `=1`

            

16 tháng 3 2017

đề bài bạn viết sai rồi nhé

αi nhanh mình sẽ Tick ạ.

9 tháng 4 2023

A = \(\dfrac{3^{100}.\left(-2\right)+3^{101}}{\left(-3\right)^{101}-3^{100}}\) 

A = \(\dfrac{3^{100}.\left(-2\right)+3^{100}.3}{\left(-3\right)^{100}.\left(-3\right)-3^{100}}\)

A = \(\dfrac{3^{100}.\left(-2+3\right)}{3^{100}.\left(-3\right)-3^{100}}\)

A = \(\dfrac{3^{100}.1}{3^{100}.\left(-3-1\right)}\)

A = \(\dfrac{3^{100}}{3^{100}}\) . \(\dfrac{1}{-4}\)

A = - \(\dfrac{1}{4}\)