K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2015

À , mk giải tiếp nké : UCLN ( 27;35 ) = 1

suy ra A & B là 2 số nguyên tố cùng nhau .

10 tháng 3 2017

2 nguyên tố đấy bạn

26 tháng 1 2016

gọi d là ƯC(8a+3 ;5a+2)

Ta có:8a+3 chia hết cho d ; 5a+2 chia hết cho d

Nên 8a+3-5a+2

=> 2(8a+3)-3(5a+2) chia hết cho d

                = 1 chia hết cho d

Vậy d=1 nên 8a+3 và 5a+2 là hai số nguyên tố cùng nhau

26 tháng 1 2016

tick roi lam

 

9 tháng 3 2017

Gọi d thuộc ƯC (8a+3;5a+2)

=>\(\hept{\begin{cases}8a+3⋮d\\5a+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(8a+3\right)⋮d\\8\left(5a+2\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}40a+15⋮d\\40a+16⋮d\end{cases}}\Rightarrow\left(40a+16\right)-\left(40a+15\right)⋮d_{ }\)

=>1\(⋮d\Rightarrow d\inƯ\left(1\right)\Rightarrow d\in\left\{1;-1\right\}\)

                                      Vậy 8a+3 và 5a+2 nguyên tố cùng nhau(vì ước chung của 2 số nguyên tố cùng nhau là :1;-1)

10 tháng 3 2017

vi minh biet la hai so nguyen to cung nhau

23 tháng 1 2021

Gọi x là \(ƯC\left(8a+3b,5a+2b\right)\)

Ta có : \(8a+3b⋮x,5a+2b⋮x\)

\(\Rightarrow8a+3b-5a+2b⋮x\)

\(\Rightarrow2\left(8a+3b\right)-3\left(5a+2b\right)⋮x\)

\(\Rightarrow16a+16b-15a+6b⋮x\)

\(\Rightarrow1a⋮x\)

Vậy \(d=1\)nên \(8a+3b\)và \(5a+2b\)cũng là hai số nguyên tố cùng nhau

Gọi \(d=ƯCLN\)\(\left(8a+3b;5a+2b\right)\)\(\left(d>0\right)\)

\(\Rightarrow\hept{\begin{cases}8a+3b⋮d\\5a+2b⋮d\end{cases}\left(1\right)}\)

\(\Rightarrow\hept{\begin{cases}5\left(8a+3b\right)⋮d\\8\left(5a+2b\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}40a+15b⋮d\\40a+16b⋮d\end{cases}}\)

\(\Rightarrow\left(40a+16b\right)-\left(40a+15b\right)⋮d\)

\(\Rightarrow b⋮d\left(2\right)\)

Từ \(\left(1\right)\Rightarrow\hept{\begin{cases}2\left(8a+3b\right)⋮d\\3\left(5a+2b\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}16a+6b⋮d\\15a+6b⋮d\end{cases}}\)

\(\Rightarrow\left(16a+6b\right)-\left(15a+6b\right)⋮d\)

\(\Rightarrow a⋮d\left(3\right)\)

Từ \(\left(2\right)\)và \(\left(3\right)\Rightarrow\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\)

Mà \(\left(a;b\right)=1\)

\(\Rightarrow d=1\)

\(\Rightarrow\left(8a+3b;5a+2b\right)=1\)

\(\Rightarrowđpcm\)

29 tháng 11 2015

 Gọi d là ƯCLN của 11a +2b và 18a +5b

=> 11a +2b chia hết cho d và 18a +5b chia hết cho d 
=> 18.(11a + 2b) chia hết cho d và 11(18a + 5b) chia hết cho d 
=> 11(18a + 5b) - 18.(11a + 2b) chia hết cho d

=> 19 b chia hết cho d => 19 chia hết cho d hoặc b chia hết cho d               (1)

=> d là ước của 19 hoặc d là ước của b 
Tương tự ta cũng có 5.(11a + 2b) chia hết cho d và 2(18a + 5b) chia hết cho d 
=> 5.(11a + 2b) - 2(18a + 5b) chia hết cho d

=> 19a chia hết cho d => 19 chia hết cho d hoặc a chia hết cho d => d là ước của 19 hoặc d là ước của a(2) 
Từ (1) và (2) suy ra d là ước của 19 hoặc d là ước chung của a và b => d = 19 hoặc d = 1 
Vậy ƯCLN của 11a + 2b và 18a + 5b là 19 hoặc 1 

29 tháng 11 2015

Đặt A = 18a + 5b

B =11a + 2b  

gọi d = UCLN( A;B)

11A - 18B = 11 (18a+5b) - 18 ( 11a +2b) = 11.18a + 55 b - 18.11a - 36b =  19b chia hết cho d 

=> d thuộc {1 ; 19 ; b ; 19b}

Vì  (A;B) =1 => d khác b ; 19b

=> d  thuộc {1;19}

 

 

 

25 tháng 12 2017

Gọi d là ƯC (8a+3b;5a+2b)

Ta có 8a+3b \(⋮\)d ; 5a+2b\(⋮\)d

=> 8a+3b-5a+2b\(⋮\)d

=> 2(8a+3b)-3(5a+2b)\(⋮\)d

=>16a+6b-15a+6b\(⋮\)d

=>1a \(⋮\)d

Vậy d=1 nên 8a+3b và 5a+2b cũng là 2 số nguyên tô cùng nhau

25 tháng 12 2017

a b c d 456m 114m 114m 114m 114m a b o 123 123 246