Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/M=2/3.5+2/5.7+2/7.9+.....+2/97.99
M=1/3-1/5+1/5-1/7+..+1/97-1/99
M=1/3-1/99
M=32/99
b)ta có 1/2.3+1/3.4+1/4.5+..+1/2015.2016+1/2016.2017<A
=>1/2-1/3+1/3-1/4+1/4-1/5+..+1/2015-1/2016+1/2016-1/2017<a
1/2-1/2017<A
2/15/4034<A (1)
Ta có
1/1.2+1/2.3+1/3.4+1/4.5+..+1/2015.2016>A
=>1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+..+1/2015-1/2016>A
1-1/2016
2015/2016>A (2)
Từ (1) và (2)=>A không phải là số tự nhiên(đpcm)
A = 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/2017. 2019
= ( 1 - 1/3 ) + ( 1/3 - 1/5 ) + ... + (1/2017 - 1/2019 )
= 1 - 1/2019
= 2018/2019
S = 1/31 + 1/32 +...+ 1/60
Ta có các phân số : 1/31, 1/32, ..., 1/59 đều lớn hơn 1/60
Nên S > 1/60 + 1/60 + 1/60 +...+ 1/60 ( có tất cả 30 phân số )
= 30/60 = 1/2
Vì 1/2 < 4/5 nên S <4/5
Vậy, chứng tỏ S < 4/5
Chúc bạn học tốt !
a) \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2017\cdot2018}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(=1-\frac{1}{2018}\)
\(=\frac{2017}{2018}\)
b) \(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{97\cdot99}\)( sửa 91.99 thành 97.99 mới đúng nha )
\(=\frac{1}{2}\left(\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+...+\frac{2}{97}-\frac{2}{99}\right)\)
\(=\frac{1}{2}\left(\frac{2}{3}-\frac{2}{99}\right)\)
\(=\frac{1}{2}.\frac{64}{99}\)
\(=\frac{32}{99}\)
a) 1/1.2 + 1/2.3 + 1/3.4 +...+1/2017.2018
= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ....+1/2017 - 1/2018
= 1 - 1/2018
= 2017/2018
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+...+\left(\frac{1}{97}-\frac{1}{97}\right)-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
~ Hok tốt ~
\(\)
Câu 1 :
Ta có :
\(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)
\(A=\frac{4-1}{4}+\frac{9-1}{9}+\frac{16-1}{16}+...+\frac{10000-1}{10000}\)
\(A=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{100^2-1}{100^2}\)
\(A=\frac{2^2}{2^2}-\frac{1}{2^2}+\frac{3^2}{3^2}-\frac{1}{3^2}+\frac{4^2}{4^2}-\frac{1}{4^2}+...+\frac{100^2}{100^2}-\frac{1}{100^2}\)
\(A=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+1-\frac{1}{100^2}\)
\(A=\left(1+1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)
Do từ \(2\) đến \(100\) có \(100-2+1=99\) số \(1\) nên :
\(A=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)< 99\) \(\left(1\right)\)
Đặt \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) lại có :
\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(B< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(B< 1-\frac{1}{100}< 1\)
\(\Rightarrow\)\(A=99-B>99-1=98\)
\(\Rightarrow\)\(A>98\) \(\left(2\right)\)
Từ (1) và (2) suy ra :
\(98< A< 99\)
Vậy A không phải là số nguyên
Chúc bạn học tốt ~
\(M=\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+.....+\frac{2}{97}-\frac{2}{99}\)
\(M=\frac{2}{3}-\frac{2}{99}=\frac{64}{99}\)