K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gợi ý nhá

Bài 3: câu 1: làm tương tự như câu hỏi lần trước bạn gửi.

b)  Bạn chỉ cần cho tử và mẫu mũ 3 lên.  theé là dễ r

27 tháng 10 2018

\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)

tự tính tiếp =)

29 tháng 7 2019

#)Giải :

Bài 1 :

a) Ta có :

\(\frac{x}{y}=\frac{7}{10}\Leftrightarrow10x=7y\Leftrightarrow\frac{x}{7}=\frac{y}{10}\)

\(\frac{y}{z}=\frac{5}{8}\Leftrightarrow8y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{8}\Leftrightarrow\frac{y}{10}=\frac{z}{16}\)

\(\Rightarrow\frac{x}{7}=\frac{y}{10}=\frac{z}{16}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{7}=\frac{y}{10}=\frac{z}{16}=\frac{2x-y+3z}{14-10+48}=\frac{104}{52}=2\hept{\begin{cases}\frac{x}{7}=2\\\frac{y}{10}=2\\\frac{z}{16}=2\end{cases}\Rightarrow\hept{\begin{cases}x=14\\y=20\\z=32\end{cases}}}\)

Vậy x = 14; y = 20; z = 32

a) Ta có: \(x:2=y:\left(-5\right)\)

nên \(\dfrac{x}{2}=\dfrac{y}{-5}\)

mà x-y=-7

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=\dfrac{-7}{7}=-1\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{2}=-1\\\dfrac{y}{-5}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=5\end{matrix}\right.\)

Vậy: (x,y)=(-2;5)

b) Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}\)

nên \(\dfrac{x}{8}=\dfrac{y}{12}\)(1)

Ta có: \(\dfrac{y}{4}=\dfrac{z}{5}\)

nên \(\dfrac{y}{12}=\dfrac{z}{15}\)(2)

Từ (1) và (2) suy ra \(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)

mà x+y-z=10

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{8}=2\\\dfrac{y}{12}=2\\\dfrac{z}{15}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=16\\y=24\\z=30\end{matrix}\right.\)

Vậy: (x,y,z)=(16;24;30)

  Giải bài 55 trang 30 Toán 7 Tập 1 | Giải bài tập Toán 7

 

b)

Giải bài 61 trang 31 Toán 7 Tập 1 | Giải bài tập Toán 7

Do đó ta có Giải bài 61 trang 31 Toán 7 Tập 1 | Giải bài tập Toán 7

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

Giải bài 61 trang 31 Toán 7 Tập 1 | Giải bài tập Toán 7

 

 

Giải bài 61 trang 31 Toán 7 Tập 1 | Giải bài tập Toán 7

\(\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\)

Vì \(\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\)

=> \(\frac{a}{3}=\frac{b}{2}\Rightarrow\frac{a}{21}=\frac{b}{14}\)(1)

   \(\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{b}{14}=\frac{c}{10}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)

\(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\Rightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)

Theo tính chất dãy tỉ số bằng nhau:

\(\Rightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\Rightarrow\frac{3a-7b+5c}{63-98+50}=\frac{30}{15}=2\)

Do đó: \(\Rightarrow\hept{\begin{cases}\frac{a}{21}=2\Rightarrow a=42\\\frac{b}{14}=2\Rightarrow b=28\\\frac{c}{10}=2\Rightarrow c=20\end{cases}}\)

Vậy: a = 42

        b = 28

        c = 20

27 tháng 10 2018

Bài 1: 

a) 

Ta có: \(\frac{a}{3}=\frac{b}{2}\)

\(\Rightarrow\frac{a}{3}.\frac{1}{7}=\frac{b}{2}.\frac{1}{7}\)

\(\Rightarrow\frac{a}{21}=\frac{b}{14}\)

Và: \(\frac{b}{7}=\frac{c}{5}\)

=> \(\frac{b}{7}.\frac{1}{2}=\frac{c}{5}.\frac{1}{2}\)

=> \(\frac{b}{14}=\frac{c}{10}\)

Do đó: \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau; ta có: 

\(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)\(=\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b-5c}{63-98-50}\)\(=\frac{30}{-85}\)\(=-\frac{6}{17}\)

+) Với \(\frac{a}{21}=-\frac{6}{17}\Rightarrow a=-\frac{126}{17}\)

+) Với \(\frac{b}{14}=-\frac{6}{17}\Rightarrow b=-\frac{84}{17}\)

+)Với \(\frac{c}{10}=-\frac{6}{17}\Rightarrow c=-\frac{60}{17}\)

Vậỵ:..........

b)

Ta có: 7a = 9b = 21c

=> 7a/63 = 9b/63 = 21c/63

=> a/9 = b/7 = c/3

Áp dụng tính chất dãy tỉ số bằng nhau; ta có:

a/9 = b/7 = c/3 = (a-b+c) / (9-7+3) = -15/5 = -3

+) a/9 = -3 => a = -27

+) b/7 = -3 => b = -21

+) c/3 = -3 => c = -9 

Vậy:..............

Bài 2: 

a) Theo bài: x:y:z = 5:3:4

=> x/5 = y/3 = z/4

Áp dụng tính chất dãy tiwr số bằng nhau; ta có:

x/5 = y/3 = z/4 = ( x + 2y -z ) / ( 5 + 2.5 - 4 ) = -121 / 11 = -11

+) Với x/5 = -11 => x=-55

+) Với y/3 = -11 => y = -33

+) Với z/4 = -11 => z = -44

Vậy:......

b) _ Tương tự câu a) ở bài 1

c) 

Ta đặt: x/3 = y/12 = z/5 = k          ( \(k\inℤ\))

=> \(\hept{\begin{cases}x=3k\\y=12k\\z=5k\end{cases}}\)

Theo bài: xyz = 22,5

=> 3k.12k.5k = 22,5

=> 180.k3 = 22,5

=> k3 = 1/8 = (1/2)3

=> k = 1/2

Với k = 1/2 => x = 3/2; y = 6; z = 5/2

Vậy:..........

d)

9 tháng 11 2016

a) \(\frac{x}{2}=\frac{y}{5}=\frac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có:

\(\frac{x}{2}=\frac{y}{5}=\frac{z}{4}=\frac{2x}{4}=\frac{3y}{15}=\frac{z}{4}=\frac{2x-3y+z}{4-15+4}=\frac{112}{7}=16\)

\(\frac{x}{2}=16=>x=32\)

\(\frac{y}{5}=16=>x=80\)

\(\frac{z}{4}=16=>z=64\)

Câu b) tương tự chỉ cần thay số vào nha bạn

25 tháng 8 2018

a) ADTCDTSBN

có: \(\frac{x}{2}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3.\)

=> x/2 = 3 => x = 6

y/3 = 3 => y = 9

z/4 = 3 => z = 12

KL:...

b,c làm tương tự nha

d) ta có: \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{2x}{10}\)

ADTCDTSBN

có: \(\frac{2x}{10}=\frac{y}{-6}=\frac{z}{7}=\frac{2x+y-z}{10+\left(-6\right)-7}=\frac{49}{-3}\)

=>...

25 tháng 8 2018

e) ADTCDTSBN

có: \(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+3}{4}=\frac{x+1+y+2+z+3}{2+3+4}=\frac{\left(x+y+z\right)+\left(1+2+3\right)}{9}\)

\(=\frac{21+6}{9}=\frac{27}{9}=3\)

=>...

g) ta có: \(\frac{x}{4}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=4k\\y=3k\end{cases}}\)

mà xy = 12 => 4k.3k = 12

                          12.k2 = 12

                              k2 = 1

                        => k = 1 hoặc k = -1

=> x = 4.1 = 4

y = 3.1 = 3

x=4.(-1) = -4 

y=3.(-1) = -3

KL:...

h) ta có: \(\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)

ADTCDTSBN

có: \(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2-y^2}{25-9}=\frac{16}{16}=1\)

=>...

\(\dfrac{x}{y}=\dfrac{2}{5}\rightarrow\dfrac{x}{2}=\dfrac{y}{5}\)

\(\dfrac{y}{z}=\dfrac{5}{3}\rightarrow\dfrac{y}{5}=\dfrac{z}{3}\)

Ta có: \(\dfrac{x}{2}=\dfrac{y}{5},\dfrac{y}{5}=\dfrac{z}{3}\rightarrow\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{3}\rightarrow\dfrac{2x}{4}=\dfrac{y}{5}=\dfrac{3z}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`(2x)/4=y/5=(3z)/9=(2x-y+3z)/(4-5+9)=16/8=2`

`-> x/2=y/5=z/3=2`

`-> x=2*2=4, y=2*5=10, z=2*3=6`

 

`x/5=y/3 -> x/25=y/15`

`y/5=z/4 -> y/15=z/12`

`x/25=y/15, y/15=z/12`

`-> x/25=y/15=z/12`

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`x/25=y/15=z/12=(x-y+z)/(25-15+12)=22/22=1`

`-> x/25=y/15=z/12=1`

`-> x=25, y=15, z=12`

 

a: x/y=2/5

=>x/2=y/5

y/z=5/3

=>y/5=z/3

=>x/2=y/5=z/3

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{3}=\dfrac{2x-y+3z}{2\cdot2-5+3\cdot3}=\dfrac{16}{8}=2\)

=>x=4; y=10; z=6

b: x/5=y/3

=>x/25=y/15

y/5=z/4

=>y/15=z/12

=>x/25=y/15=z/12

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{25}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{25-15+12}=1\)

=>x=25; y=15; z=12