K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2019

Violympic toán 7

14 tháng 7 2019

b) |x + 1| + |x + 2| + |x + 3| = 4x

Có: \(\left\{{}\begin{matrix}\left|x+1\right|>0\\\left|x+2\right|>0\\\left|x+3\right|>0\end{matrix}\right.\) \(\forall x\)

Do đó, \(4x>0=>x>0\).

Lúc này ta có: \(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)=4x\)

=> \(3x+6=4x\)

=> \(4x-3x=6\)

=> \(1x=6\)

=> \(x=6:1\)

=> \(x=6\)

Vậy \(x=6\).

Chúc bạn học tốt!

31 tháng 10 2017

\(2x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}\\ 4y=5z\Rightarrow\dfrac{y}{5}=\dfrac{z}{4}\Rightarrow\dfrac{y}{10}=\dfrac{z}{8}\\ \Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{8}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{8}=\dfrac{x+y-z}{15+10-8}=\dfrac{78}{17}\\ \Rightarrow x=\dfrac{78}{17}.15=...\\ y=\dfrac{78}{17}.10=\dfrac{780}{17}\\ z=\dfrac{78}{10}.8=...\)

31 tháng 10 2017

Cảm ơn rất nhiều!

16 tháng 1 2021

a)=>x(y+2)-(y+2)=3

=>(y+2)(x-1)=3

Vì x,y thuộc Z nên y+2 và x-1 thuộc Ư(3)={+1;+3;-1;-3}

Sau đó thay lần lượt các cặp -1 với -3 và 1 với 3

3 tháng 8 2017

a. Từ 4+x/7+y=4/7

=>7(4+x)=4(7+x)

28+7x=28+4y

=>7x=4y

Vì x+y=22=>x=22-y

Nên 7(22-x)=4y

154-7y=4y

11y=154

y=14 =>x=8

b. Từ x/3=y/4 và y/5=z/6

=>x/15=x/20=z/24 (1)

Từ (1):ta có 2x/30=3y/60=4z/96=2x+3y+4z/186(2)

Ta lại có:3x/45=4y/80=5z/120=3x+4y+5z/245(3)

Từ (2) và (3):2x+3y+4z/3x+4y+5z=186/245

20 tháng 12 2018

a)Ta có: \(2x=3y;5y=7z\)và \(x-y-z=-27\)

\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)\(x-y-z=-27\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)và \(x-y-z=-27\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y-z}{21-14-10}=\frac{-27}{-3}=9\)

Ta có:\(\frac{x}{21}=9\Rightarrow x=9.21=189\)

          \(\frac{y}{14}=9\Rightarrow y=9.14=126\)

         \(\frac{z}{10}=9\Rightarrow z=9.10=90\)

Vậy:\(x=189;y=126\)\(z=90\)

20 tháng 12 2018

b) \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)\(x^2-2y^2+z^2=18\)

\(\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)\(x^2-2y^2+z^2=18\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)

Ta có:\(\frac{x^2}{16}=9\Rightarrow x^2=144\Rightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)

\(\frac{2y^2}{50}=9\Rightarrow2y^2=450\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)

\(\frac{z^2}{36}=9\Rightarrow z^2=324\Rightarrow\orbr{\begin{cases}z=18\\z=-18\end{cases}}\)

Vậy: \(x=12;y=15;z=18\)hoặc \(x=-12;y=-15;z=-18\)

16 tháng 7 2018

\(a,\) \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\left(1\right)\)

\(7x=5z\Rightarrow\frac{x}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{z}{14}\left(2\right)\)

Từ (1) và (2) ta có: \(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}\) và \(x-y+z=32\)

Áp dụng t/c DTSBN ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}=\frac{x-y+z}{10-15+14}=\frac{32}{9}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{32}{9}\Rightarrow x=\frac{320}{9}\\\frac{y}{15}=\frac{32}{9}\Rightarrow y=\frac{160}{3}\\\frac{z}{14}=\frac{32}{9}\Rightarrow z=\frac{2560}{189}\end{cases}}\)

Vậy \(x=\frac{320}{9};y=\frac{160}{3};z=\frac{2560}{189}\)

các câu còn lại lm tương tự nhé

16 tháng 7 2018

uhm, tks bn

25 tháng 10 2020

a) 2x = 3y =7z và x+y-z =58

\(\Rightarrow\frac{2x}{42}=\frac{3y}{42}=\frac{7z}{42}\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{6}=\frac{x+y-z}{21+14-6}=\frac{58}{29}=2\)

\(\frac{x}{21}=2\Rightarrow x=21\cdot2=42\)

\(\frac{y}{14}=2\Rightarrow y=14\cdot2=28\)

\(\frac{z}{6}=2\Rightarrow z=6\cdot2=12\)