Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) $x+3=(x+3)^2$
$\Leftrightarrow (x+3)^2-(x+3)=0$
$\Leftrightarrow (x+3)(x+3-1)=0$
$\Leftrightarrow (x+3)(x+2)=0$
$\Rightarrow x+3=0$ hoặc $x+2=0$
$\Rightarrow x=-3$ hoặc $x=-2$
b)
$n^2-4n-15\vdots n+2$
$\Leftrightarrow n(n+2)-6(n+2)-3\vdots n+2$
$\Leftrightarrow 3\vdots n+2$
$\Rightarrow n+2\in\left\{\pm 1;\pm 3\right\}$
$\Rightarrow n\in\left\{-3; -1; 1; -5\right\}$
Bài 3:
a: \(\Leftrightarrow8n^2+4n-8n-4+5⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{0;-1;2;-3\right\}\)
b: \(\Leftrightarrow4n^3-2n^2-6n+3+2⋮2n-1\)
\(\Leftrightarrow2n-1\in\left\{1;-1\right\}\)
hay \(n\in\left\{1;0\right\}\)
Bài 1:
a)x2-10x+9
=x2-x-9x+9
=x(x-1)-9(x-1)
=(x-9)(x-1)
b)x2-2x-15
=x2+3x-5x-15
=x(x+3)-5(x+3)
=(x-5)(x+3)
c)3x2-7x+2
=3x2-x-6x+2
=x(3x-1)-2(3x-1)
=(x-2)(3x-1)x^3-12+x^2
d)x3-12+x2
=x3+3x2+6x-2x2-6x-12
=x(x2+3x+6)-2(x2+3x+6)
=(x-2)(x2+3x+6)
a) Áp dụng định lý Bézout ( Bê-du ) , dư của \(f\left(x\right)=x^3+x^2-x+a\)cho x + 2 = x - (-2) là \(f\left(-2\right)\)
Để f(x) chia hết cho x + 2 thì f(-2)=0
\(\Rightarrow\left(-2\right)^3+\left(-2\right)^2-\left(-2\right)+a=0\)
\(-8+4+2+a=0\)
\(a-2=0\)
\(a=2\)
Vậy ...
c) \(\frac{n^3+n^2-n+5}{n+2}=\frac{n^3+2n^2-n^2-2n+n+2+3}{n+2}\)nguyên để \(n^3+n^2-n+5⋮n+2\)
\(\Rightarrow\frac{n^2\left(n+2\right)-n\left(n+2\right)+\left(n+2\right)+3}{n+2}\in Z\)
\(\Rightarrow n^2-n+1+\frac{3}{n+2}\in Z\)
\(n^2,n,1\in Z\Rightarrow\frac{3}{n+2}\in Z\)
\(\Rightarrow n+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow n\in\left\{-5;-3;-1;1\right\}\)
Vậy ...
a) đề x3+x2-x +a chia hét cho (x-1)2 ?
x3+x2-x +a=x(x2-2x+1)+3(x2-2x+1)+4x-3+a đề sai nhé
b)A(2)=0=> 8-12+10+m=0 => m=6
c)2n2-n+2=2n(n+1)-3(n+1) +5 chia het cho n+1 khi n+1 là ước của 5
n+1=-1;1;-5;5
n=-2;0;-6;4
\(a.\left(x^3-16x\right)=0\)
\(\Leftrightarrow x\left(x^2-16\right)=0\)
\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x-4=0\\x+4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=4\\x=-4\end{cases}}}\)
Uầy lười lm waa
. Hãy nhiệt tình lên :>> Chúng ta là công dân cùng một nước,phải giúp đỡ nhau a~~~
a, Ta có : \(x+3=\left(x+3\right)^2\)
=> \(\left(x+3\right)-\left(x+3\right)^2=0\)
=> \(\left(x+3\right)\left(1-\left(x+3\right)\right)=0\)
=> \(\left[{}\begin{matrix}x+3=0\\1-\left(x+3\right)=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{-2,-3\right\}\)
b, Ta có : \(n^2-4n-15⋮n+2\)
=> \(n^2+4n-8n+4-16-3⋮n+2\)
=> \(\left(n^2+4n+4\right)-\left(8n+16\right)-3⋮n+2\)
=> \(\left(n+2\right)^2-8\left(n+2\right)-3⋮n+2\)
=> \(\left(n+2\right)\left(n-6\right)-3⋮n+2\)
Mà \(\left(n+2\right)\left(n-6\right)⋮n+2\)
=> \(-3⋮n+2\)
=> \(n+2\inƯ_{\left(-3\right)}\)
Mà \(n\in Z\)
=> \(n+2\in\left\{1,-1,3,-3\right\}\)
=> \(n\in\left\{-1,-3,1,-5\right\}\)
Vậy \(n\in\left\{-1,-3,1,-5\right\}\) để n2- 4n - 15 chia hết cho n + 2