K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2018

a, Ta có : \(\left(x-5\right)⋮\left(x+1\right)\)

\(\Rightarrow\left(x+1-6\right)⋮\left(x+1\right)\)

\(\Rightarrow6⋮\left(x+1\right)\)

\(\Rightarrow x+1\inƯ\left(6\right)\)

Mà \(Ư\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

\(\Rightarrow x+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

\(\Rightarrow x\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)

b, gọi 2 số nguyên cần tìm là a,b

Ta có : \(a+b=a.b\)

\(\Rightarrow ab+a-b=0\)

\(\Rightarrow a\left(b+1\right)-b=0\)

\(\Rightarrow a\left(b+1\right)-b-1=-1\)

\(\Rightarrow a\left(b+1\right)-\left(b+1\right)=-1\)

\(\Rightarrow\left(b+1\right)\left(a-1\right)=-1\)

\(\Rightarrow b+1;a-1\) là ước của -1

 Với \(b+1=-1\Rightarrow b=-2\)

\(a-1=1\Rightarrow a=2\)

Với \(b+1=1\Rightarrow b=0\)

\(a-1=-1\Rightarrow a=0\)

Vậy b = - 2                           b = 0

       a = 2                             a = 0

13 tháng 1 2018

tớ chỉ làm phần 1 thôi

1.  ta có (x+5)y-x=10

=>(x+5)y-x-5=10-5

=>(x+5)y-(x+5)=5

=>(x+5)(y-1)=5

lập bảng xét giá trị của x,y \(\in Z\)

Bạn tự làm tiếp nhé -_-

16 tháng 4 2016

b, Gọi 2 số cần tìm là x và y

Ta có : xy = x - y

<=> xy - x + y = 0 <=> x.(y-1) + y-1 = 0 - 1 = -1

<=> (y-1).(x+1) = -1 = (-1).1 = 1.(-1)

Có 2 trường hợp

- TH1 : y-1 = -1 và x+1 = 1 thì tìm được x = 0; y = 0

- TH2 : y-1 = 1 và  x+1 = -1 tìm được x = -2; y = 2

16 tháng 4 2016

a)0 và 0 ;2 và 2

b)0 và 0;2 và -2

14 tháng 7 2018

1) Gọi hai số đó là a và b

Ta có:   a+b=3(a-b) 

        => a+b = 3a -3b 

=> a+b +3b = 3a

=> a+ 4b = 3a => 4b = 2a  => 2b = a => a : b = 2

ĐS : 2

2) Gọi thương của phép chia A chia cho 54 là b

Ta có : a : 54 = b ( dư 38 ) => a = 54b + 38 

=> a = 18.3b + 18.2 + 2 = 18.( 3b + 2 ) + 2

=> a chia cho 18 được thương là 3b + 2 ; dư 2

Theo đề bài 3b + 2 = 14 => 3b = 12 => b = 4

Vậy a = 54.4 + 38 = 254 

3)a) Tích của 3 số tận cùng là 1 => tích lẻ => cả 3 số trong đó đều là số lẻ

Mà Tổng của 3 số lẻ là 1 số lẻ nên không thể tận cùng là 4 

=> Không tồn tại 3 số như vậy

b) Tích 4 số là số lẻ => cả 4 số đó đều là số lẻ  

Vì tổng của 2 số lẻ là số chẵn nên tổng của 4 số  lẻ là số chẵn  => Không tồn tại  4 số thỏa  mãn tổng là số lẻ 

~ Học tốt ~

21 tháng 5 2015

Cậu search mạng chứ gì

Bài 1. Gọi 3 số nguyên liên tiếp là a-1; a; a+1 (a thuộc Z) 
Theo bài ra: a - 1 + a + a + 1 là số lẻ hay 3a là số lẻ 
=> a - 1 và a + 1 là số chẵn. Trong hai số chẵn liên tiếp, tồn tại một số chia hết cho 4, số còn lại chia hết cho 2. Do đó (a - 1)(a + 1) chia hết cho 8. 
Trong ba số nguyên liên tiếp, luôn tồn tại một số chia hết cho 3. Vì vậy tích (a-1)a(a+1) chia hết cho 3. 
Mà (a - 1)(a + 1) chia hết cho 8 nên tích (a - 1)a(a + 1) chia hết cho 24. 
Vậy đccm. 

Bài 2. Ta có: ab + cd + ad + bc = (ab + ad) + (bc + cd) = a(b + d) + c(b + d) = (a + c)(b + d). 
Do đó ab + cd + ad + bc chia hết cho a + c với a khác -c. 

Bài 3.a) x có 100 số hạng, chia thành 25 nhóm, mỗi nhóm 4 số, ta có: 
x = (1 - 3 + 3^2 - 3^3) + (3^4 - 3^5 + 3^6 - 3^7) + ... + (3^96 - 3^97 + 3^98 - 3^99) 
= (1 - 3 + 3^2 - 3^3) + (3^4)(1 - 3 + 3^2 - 3^3) + ... + 3^96(1 - 3 + 3^2 - 3^3) 
= (1 - 3 + 3^2 - 3^3)(1 + 3^4 + ... + 3^96) 
= -20(1 + 3^4 + ... + 3^96) chia hết cho 20. 
Vậy x chia hết cho 20 (đccm) 
b, Ta có: x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 
=> 3x = 3 - 3^2 + 3^3 - 3^4 + ... + 3^99 - 3^100 
=> 3x + x = 1 - 3^100 
=> 4x = (1 - 3^100) 
=> x = (1 - 3^100)/4 
c, Vì x = (1 - 3^100)/4 mà x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 là số nguyên 
nên (1 - 3^100)/ 4 là số nguyên => 1 - 3^100 chia hết cho 4 
=> 1 đồng dư với 3^100 theo môđun 4 hay 3^100 chia 4 dư 1(đccm) 

Bài 4. Ta có: a^2 , b^2 và c^2 là các số chính phương nên a^2, b^2 và c^2 chia 3 dư 0 hoặc 1. 
Nếu trong 3 số a^2, b^2 và c^2 không có số nào chia hết cho 3 thì mỗi số đó đều chia 3 dư 1. 
Do đó tổng a^2 + b^2 + c^2 phải chia hết cho 3. Điều này trái với đầu bài vì a^2 + b^2 + c^2 = 2051, là số chia 3 dư 2. 
Điều này có nghĩa: trong ba số a^2, b^2, c^2 có một số chia hết cho 3. Mà 3 là số nguyên tố nên trog ba số a, b, c có một số chia hết cho 3 => abc chia hết cho 3

21 tháng 5 2015

Bài 1. Gọi 3 số nguyên liên tiếp là a-1; a; a+1 (a thuộc Z) 
Theo bài ra: a - 1 + a + a + 1 là số lẻ hay 3a là số lẻ 
=> a - 1 và a + 1 là số chẵn. Trong hai số chẵn liên tiếp, tồn tại một số chia hết cho 4, số còn lại chia hết cho 2. Do đó (a - 1)(a + 1) chia hết cho 8. 
Trong ba số nguyên liên tiếp, luôn tồn tại một số chia hết cho 3. Vì vậy tích (a-1)a(a+1) chia hết cho 3. 
Mà (a - 1)(a + 1) chia hết cho 8 nên tích (a - 1)a(a + 1) chia hết cho 24. 
Vậy đccm. 

Bài 2. Ta có: ab + cd + ad + bc = (ab + ad) + (bc + cd) = a(b + d) + c(b + d) = (a + c)(b + d). 
Do đó ab + cd + ad + bc chia hết cho a + c với a khác -c. 

Bài 3.a) x có 100 số hạng, chia thành 25 nhóm, mỗi nhóm 4 số, ta có: 
x = (1 - 3 + 3^2 - 3^3) + (3^4 - 3^5 + 3^6 - 3^7) + ... + (3^96 - 3^97 + 3^98 - 3^99) 
= (1 - 3 + 3^2 - 3^3) + (3^4)(1 - 3 + 3^2 - 3^3) + ... + 3^96(1 - 3 + 3^2 - 3^3) 
= (1 - 3 + 3^2 - 3^3)(1 + 3^4 + ... + 3^96) 
= -20(1 + 3^4 + ... + 3^96) chia hết cho 20. 
Vậy x chia hết cho 20 (đccm) 
b, Ta có: x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 
=> 3x = 3 - 3^2 + 3^3 - 3^4 + ... + 3^99 - 3^100 
=> 3x + x = 1 - 3^100 
=> 4x = (1 - 3^100) 
=> x = (1 - 3^100)/4 
c, Vì x = (1 - 3^100)/4 mà x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 là số nguyên 
nên (1 - 3^100)/ 4 là số nguyên => 1 - 3^100 chia hết cho 4 
=> 1 đồng dư với 3^100 theo môđun 4 hay 3^100 chia 4 dư 1(đccm) 

Bài 4. Ta có: a^2 , b^2 và c^2 là các số chính phương nên a^2, b^2 và c^2 chia 3 dư 0 hoặc 1. 
Nếu trong 3 số a^2, b^2 và c^2 không có số nào chia hết cho 3 thì mỗi số đó đều chia 3 dư 1. 
Do đó tổng a^2 + b^2 + c^2 phải chia hết cho 3. Điều này trái với đầu bài vì a^2 + b^2 + c^2 = 2051, là số chia 3 dư 2. 
Điều này có nghĩa: trong ba số a^2, b^2, c^2 có một số chia hết cho 3. Mà 3 là số nguyên tố nên trog ba số a, b, c có một số chia hết cho 3 => abc chia hết cho 3