Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a) Theo đề bài, vì x và y tỉ lệ thuận với 3, 4 nên:
\(\Rightarrow\frac{x}{3}=\frac{y}{4}\) và \(x+y=14.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{3}=2\Rightarrow x=2.3=6\\\frac{y}{4}=2\Rightarrow y=2.4=8\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(6;8\right).\)
b) Theo đề bài, vì a và b tỉ lệ thuận với 7, 9 nên:
\(\Rightarrow\frac{a}{7}=\frac{b}{9}.\)
\(\Rightarrow\frac{3a}{21}=\frac{2b}{18}\) và \(3a-2b=30.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{3a}{21}=\frac{2b}{18}=\frac{3a-2b}{21-18}=\frac{30}{3}=10.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{a}{7}=10\Rightarrow a=10.7=70\\\frac{b}{9}=10\Rightarrow b=10.9=90\end{matrix}\right.\)
Vậy \(\left(a;b\right)=\left(70;90\right).\)
Chúc bạn học tốt!
Vì x;y;z tỉ lệ thuận với 3;4;5 nên \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Theo t/c của dãy tỉ số bằng nhau ta được:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x-y+z}{3-4+5}=\frac{x-y+z}{4}\)
Thay x - y + z = 20 ta được:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{20}{4}=5\)
Từ \(\frac{x}{3}=5\Rightarrow x=5.3=15\)
Tương tự với y và z
Nhớ k cho mình nhé! Thank you!!!
Vì a,b,c tỉ lệ thuận với 4,7,10 nên \(\frac{a}{4}=\frac{b}{7}=\frac{c}{10}\)
Theo t/c của dãy tỉ số bằng nhau ta có:
\(\frac{a}{4}=\frac{b}{7}=\frac{c}{10}=\frac{2a+3b+4c}{2.4+3.7+4.10}=\frac{2a+3b+4c}{69}\)
Thay 2a + 3b + 4c = 69 ta được:
.........
Tương tự câu a
Nhớ k cho mình nhé! Thank you!!!
Theo mình là:
a/ Theo đề ta có:
x/3=y/4 và x+y=14
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
x/3=y/4=x+y=3+4=14/7=2
Từ x/3=2=>x=2.3=6
Từ y/4=2>y=2.4=8
Vậy x=6 và y=8.
b/
Theo đề ta có:
a/7=b/9 và 3a-2b=30
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
a/7=b/9=3a/21=2b/18=3a-2b/21=18=30/3=10
Từ a/7=10=>a=10.7=70
Từ b/9=10=>b/10.9=90
Vậy a=70 và b=90.
c/
Theo đề ta có:
x/3=y/4=z/5 và x-y+z=20
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
x/3=y/4=z/5=x-y+z/3-4=5=20/4=5
Từ x/3=5=>x=5.3=15
Từ y/4=5=>y=5.4=20
Từ z/5=5=>z=5.5=25
Vậy x=15,y=20 và z=25
d/
Theo đề ta có:
a/4=b/7=c/10 và 2a+3b+4c=69
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
a/4=b/7=c/10=2a/8=3b/21=4c/40=2a+3b+4c/8+21+40=69/69=1
Từ a/4=1=>a=1.4=4
Từ b/7=1=>b=1.7=7
Từ c/10=1=>c=1.10=10
Vậy a=4,b=7 và c=10
a) x=6 y=8
b) a=70 b=90
c) x=15 y=20 z=25
d) a=4 b=7 c=10
bạn kiểm tra lại giúp mk xem câu nào sai chứ mk ko chắc đúng 100% đâu. (hơi mất tự tin sau khi nhìn điểm số ý mà)
_HT_
X và Y và Z tỉ lệ thuận với 3;4 và 5
Ta có: x/3 = y/4 = z/5
= x - y + z / 3+4+5=20/12
x/3 = 20/12 => x
a, Áp dụng tc dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\\ \Rightarrow\left\{{}\begin{matrix}x=6\\y=8\end{matrix}\right.\)
b, Áp dụng tc dstbn:
\(\dfrac{a}{7}=\dfrac{b}{9}=\dfrac{3a-2b}{7\cdot3-2\cdot9}=\dfrac{30}{3}=10\\ \Rightarrow\left\{{}\begin{matrix}a=70\\b=90\end{matrix}\right.\)
c, Gọi 3 phần cần tìm là a,b,c
Áp dụng tc dstbn:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+b+c}{2+3+4}=\dfrac{99}{9}=11\\ \Rightarrow\left\{{}\begin{matrix}a=22\\b=33\\c=44\end{matrix}\right.\)
a, Vì x, y tỉ lệ thuận với 3; 4 nên
=> \(\frac{x}{3}=\frac{y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)
\(\Rightarrow\left[{}\begin{matrix}\frac{x}{3}=2\Rightarrow x=2.3=6\\\frac{y}{4}=2\Rightarrow y=2.4=8\end{matrix}\right.\)
Vậy x = 6 ; y = 8
b, Vì a, b tỉ lệ thuận với 7, 9 nên:
\(\Rightarrow\frac{a}{7}=\frac{b}{9}\Rightarrow\frac{3a}{21}=\frac{2b}{18}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{3a}{21}-\frac{2b}{18}=\frac{30}{3}=10\)
\(\Rightarrow\left[{}\begin{matrix}\frac{3a}{21}=\frac{a}{7}=10\Rightarrow a=10.7=70\\\frac{2b}{18}=\frac{b}{9}=10\Rightarrow b=10.9=90\end{matrix}\right.\)
Vậy a = 70 ; b = 90
a) Vì x;y;z tỉ lệ thuận với 3;4;5 nên:
\(\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x-y+z}{3-4+5}=\dfrac{20}{4}=5\)
\(\left\{{}\begin{matrix}\dfrac{x}{3}=5\Rightarrow5.3=15\\\dfrac{y}{4}=5\Rightarrow5.4=20\\\dfrac{z}{5}=5\Rightarrow5.5=25\end{matrix}\right.\)
Vậy x;y;z lần lượt là 15;20;25
b) Vì a;b;c tỉ lệ thuận với 4;7;10
\(\Rightarrow\dfrac{a}{4}=\dfrac{b}{7}=\dfrac{c}{10}\Rightarrow\dfrac{2a}{8}=\dfrac{3b}{21}=\dfrac{4c}{40}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{2a}{8}=\dfrac{3b}{21}=\dfrac{4c}{40}=\dfrac{2a+3b+4c}{8+21+40}=\dfrac{69}{69}=1\)
\(\left\{{}\begin{matrix}\dfrac{2a}{8}=\dfrac{a}{4}=1\Rightarrow a=4.1=4\\\dfrac{3b}{21}=\dfrac{b}{7}=1\Rightarrow7.1=7\\\dfrac{4c}{40}=\dfrac{c}{10}=1\Rightarrow10.1=10\end{matrix}\right.\)
Vậy a;b;c lần lượt là 4;7;10
a: xy=k
nên y=x/k
yz=1
nên \(\dfrac{x}{k}\cdot z=1\)
=>xz=k
Vậy: x tỉ lệ nghịch với z theo hệ số tỉ lệ k
b: xy=k
y=z
nên x/k=z
=>x=kz
Vậy: x tỉ lệ thuận với z theo hệ số tỉ lệ k
c: x=ky
nên y=x/k
yz=1
nên \(\dfrac{xz}{k}=1\)
=>xz=k
Vậy: x tỉ lệ nghịch với z theo hệ số tỉ lệ k
a) Ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)
=> x = 2 . 3 = 6 ; y = 2 . 4 = 8
b) Ta có : \(\frac{a}{7}=\frac{b}{9}\)
\(=>\frac{3a}{21}=\frac{2b}{18}=\frac{3a-2b}{21-18}=\frac{30}{3}=10\)
=> a = 10 . 7 = 70 ; b = 10 . 9 = 90
c) Ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x-y+z}{3-4+5}=\frac{20}{4}=5\)
=> x = 5 . 3 = 15 ; y = 5 . 4 = 20 ; z = 5 . 5 = 25
d) Ta có : \(\frac{a}{4}=\frac{b}{7}=\frac{c}{10}\)
\(=>\frac{2a}{8}=\frac{3b}{21}=\frac{4c}{40}=\frac{2a+3b+4c}{8+21+40}=\frac{69}{69}=1\)
=> a = 1 . 4 = 4 ; b = 1 . 7 = 7 ; c = 1 . 10 = 10