Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left(a-2\right).\sqrt{2}=b+1\)
Từ giả thiết a,b là các số hữu tỉ nên ta có VT là một số vô tỉ, vế phải là một số hữu tỉ. Do đó ta cần tìm a để VT là một số hữu tỉ. Nhận thấy chỉ có a = 2 thỏa mãn . Suy ra b = -1
Vậy (a;b) = (2;-1)
Ta có : BD = DH + HB
=> HB = BD - HD = BD - AC ( Tứ giác ACDH là HCN )
=> HB = 4 .
Lại có : Tứ giác AHDC là HCN .
=> AH = CD = 8 .
- Áp dụng định lý pi ta go vào tam giác AHB vuông tại H ta được :
\(AH^2+HB^2=x^2=AB^2\)
=> x = \(\sqrt{4^2+8^2}=4\sqrt{5}=~8,9\) ( đvđd )
Vậy ...
\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{10}};\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{10}};...;\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}};\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)
\(\Rightarrow A>\frac{100.1}{\sqrt{100}}=\frac{100}{10}=10\)
Vậy A > 10
ta có \(\frac{1}{\sqrt{1}}>\frac{1}{10}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{10}\)
..............................
\(\frac{1}{\sqrt{99}}>\frac{1}{10}\)
\(\frac{1}{\sqrt{100}}=\frac{1}{10}\)
\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}\)(có 100 số 1/10)
\(\Rightarrow A>\frac{100}{10}=10\)
Xem kỹ lại đề nhé! loại này đề lệch một tý thôi -->Không rút được !
p/s: Tránh truongf hợp làm đến cuối mới biết đề sai.
a, Ta có: 1= \(\sqrt{9}-\sqrt{4}\)
Nx: \(\begin{cases} 0<8<9\\ 5>4>0 \end{cases}\)
=>\(\begin{cases} \sqrt{8}<\sqrt{9}\\ \sqrt{5}>\sqrt{4} \end{cases}\)
=>\(\sqrt{8}-\sqrt{5}<\sqrt{9}-\sqrt{4}\)
=>\(\sqrt{8}-\sqrt{5}<1\)
b,Ta có: \(\sqrt{63-27}=\sqrt{36}=6\)
\(\sqrt{63}-\sqrt{27}<\sqrt{64}-\sqrt{25}\\ =>\sqrt{63}-\sqrt{27}<3\\ =>\sqrt{63}-\sqrt{27}<6(vì 3<6)\\ =>\sqrt{63}-\sqrt{27}<\sqrt{63-27} \)
\(E=5\sqrt{16}-4\sqrt{9}+\sqrt{25}-0,3\sqrt{400}\)
\(E=5\times4-4\times3+5-0,3\times20\)
\(E=20-12+5-6\)
\(E=6\)
Hok tốt
Xét \(\frac{1}{\sqrt{13}}>\frac{1}{\sqrt{14}}\Rightarrow\frac{1}{\sqrt{13}}-1< \frac{1}{\sqrt{14}}+1\)
Mà \(\sqrt{225}< \sqrt{289}\)
\(\Rightarrow\sqrt{225}-\left(\frac{1}{\sqrt{13}}-1\right)< \sqrt{289}-\left(\frac{1}{\sqrt{14}}+1\right)\)
Vậy....................
\(A=567,8659....\approx567,8\)
\(A=\sqrt{321930+\sqrt{291495+\sqrt{2171954+\sqrt{3041975}}}}\)
\(A=567,8655...\approx567,9\)