K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 7 2019

Lời giải:
a)

\(\sqrt{144}.\sqrt{\frac{49}{69}}\sqrt{0,01}=12.\frac{7}{\sqrt{69}}.0,1=\frac{8,4}{\sqrt{69}}=\frac{42\sqrt{69}}{345}\)

b)

\(\sqrt{0,25}-\sqrt{225}+\sqrt{2,25}=\sqrt{0,5^2}-\sqrt{15^2}+\sqrt{1,5^2}\)

\(=0,5-15+1,5=-13\)

c)

\(72:\sqrt{3^3+3^2}-3\sqrt{5^2-3^2}\)

\(=\frac{72}{\sqrt{36}}-3\sqrt{16}=\frac{72}{6}-3.4=12-12=0\)

Tính:

a, √49 . √144√256 : √64

   =   7 . 12 + 16 : 8 

   = 84 + 2

    = 86

b, 72 :  √2^2.36.3^2√225

= 72:  2.6.3-15

= -13

25 tháng 8 2018

\(a,\sqrt{49}.\sqrt{144}+\sqrt{256}:\sqrt{64}\\ =7.12+16:8\\ =84+2\\ =86\\ b,72:\sqrt{2^3.3^2.36}-\sqrt{225}\\ =72:\sqrt{1296}-25\\ =72:36-25\\ =2-25\\ =-23\)

21 tháng 7 2017

\(\frac{A}{\sqrt{2}}=\frac{2+\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2-\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}\)

 =\(\frac{2+\sqrt{3}}{3+\sqrt{3}}+\frac{2-\sqrt{3}}{3-\sqrt{3}}\) =\(\frac{\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)+\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}\) =\(\frac{6}{6}=1\)

\(\Rightarrow A=\sqrt{2}\)

16 tháng 7 2016

a/ Bạn ghi nhầm đề rồi

c/ \(2\sqrt{18\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{5\sqrt{48}}\)   

     \(=2\sqrt{18}.\sqrt{\sqrt{3}}-2\sqrt{5}.\sqrt{\sqrt{3}}-3\sqrt{5}.\sqrt{\sqrt{48}}\)

       \(=2.3\sqrt{2}.\sqrt{\sqrt{3}}-2\sqrt{5}.\sqrt{\sqrt{3}}-3\sqrt{5}.\sqrt{4\sqrt{3}}\)

       \(=2.3\sqrt{2}.\sqrt{\sqrt{3}}-2\sqrt{5}.\sqrt{\sqrt{3}}-6\sqrt{5}.\sqrt{\sqrt{3}}\)

        \(=2\sqrt{\sqrt{3}}\left(3\sqrt{2}-\sqrt{5}-3\sqrt{5}\right)\)

         \(=2\sqrt{\sqrt{3}}\left(3\sqrt{2}-4\sqrt{5}\right)\)\(=2\sqrt{2\sqrt{3}}\left(3-2\sqrt{10}\right)\)

f/ \(\sqrt{2}.\sqrt{2+\sqrt{3}}-2\left(\sqrt{3}-1\right)=\sqrt{4+2\sqrt{3}}-2\left(\sqrt{3}-1\right)\)

    \(=\sqrt{\left(\sqrt{3}+1\right)^2}-2\left(\sqrt{3}-1\right)=\left(\sqrt{3}+1\right)-2\left(\sqrt{3}-1\right)\)

      \(=\sqrt{3}+1-2\sqrt{3}+2=3-\sqrt{3}=\sqrt{3}\left(\sqrt{3}-1\right)\)

g/ \(\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}-2\sqrt{3}+2007\)

   \(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-2\sqrt{3}+2007\)

     \(=\sqrt{3}-\sqrt{2}+\sqrt{3}+\sqrt{2}-2\sqrt{3}+2007\)

       \(=2007\)