K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2016

Ta có : \(\frac{a}{b}-\frac{a+n}{b+n}=\frac{ab+an-ab-bn}{b\left(b+n\right)}=\frac{n\left(a-b\right)}{b\left(b+n\right)}\)

Ta có mẫu gồm các chữ số > 0=> mẫu dương: n> 0. Nếu a > b => a - b > 0 <=> \(\frac{n\left(a-b\right)}{b\left(b+n\right)}>0=>\frac{a}{b}>\frac{a+n}{b+n}\)

Nếu a < b <=> a - b < 0 => \(\frac{n\left(a-b\right)}{b\left(b+n\right)}< 0=>\frac{a}{b}< \frac{a+n}{b+n}\)

Vậy đó mik nha

13 tháng 6 2016

Ta có:

\(\frac{a}{b}\)=\(\frac{a\left(b+n\right)}{b\left(b+n\right)}\)=\(\frac{ab+an}{b\left(b+n\right)}\)

\(\frac{a+n}{b+n}\)=\(\frac{\left(a+n\right)b}{\left(b+n\right)b}\)=\(\frac{ab+bn}{b\left(b+n\right)}\)

Vì n \(\in\)N nên n có thể bằng 0.

Nếu n=0 => \(\frac{a+n}{b+n}\)=\(\frac{a+0}{b+0}\)=\(\frac{a}{b}\)

Theo đề ta có: 

   a > b => ab+an>ab+bn

=> \(\frac{a}{b}\)>\(\frac{a+n}{b+n}\)

24 tháng 6 2017

+) Quy đồng mẫu số :

\(\dfrac{a}{b}=\dfrac{a\left(b+2001\right)}{b\left(b+2001\right)}=\dfrac{ab+a2001}{b\left(b+2001\right)}\)

\(\dfrac{a+2001}{b+2001}=\dfrac{\left(a+2001\right)b}{\left(b+2001\right)b}=\dfrac{ab+2001b}{b\left(b+2001\right)}\)

\(b>0\) nên mẫu số của 2 phân số trên là số dương. Ta chỉ cần so sánh tử số thôi :

So sánh : \(ab+a2001\) với \(ab+2001b\)

+) Nếu : \(a< b\Rightarrow\dfrac{a}{b}< \dfrac{a+2001}{b+2001}\)

+) Nếu : \(a=b\Rightarrow\dfrac{a}{b}=\dfrac{a+2001}{b+2001}=1\)

+) Nếu : \(a>b\Rightarrow\dfrac{a}{b}>\dfrac{a+2001}{b+2001}\)

24 tháng 6 2017

Phạm Quỳnh Thư đó chỉ là kí tự đánh dấu cho rõ ràng dòng lỗi thôi, có cx dc ko có cx ko s

a) Áp dụng định lý Py-ta-go vào ∆ABC ta có AB^2 + AC^2 = BC^2 => BC^2= 36 + 64 =100 => BC =10cm b) Ta có BC>AC>AB => A > B> C c) Xét ∆MAN ta có : MN^2=MA^2+AN^2 BC^2=AB^2+AC^2 MÀ AB>MA , AC >AN => AM^2+AN^2 MN^2 MN