Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a , ta có : 812 = ( 4 . 2 )12 = 424
128 = ( 4 . 3 ) 8 = 424
vì 24 = 24 nên 4^24 = 4^24
do đó 8^12 = 12^8 ..
K BIẾT CÓ ĐÚNG K NỮA
AI K MIK MIK K LẠI
a)\(12^8=\left(12^2\right)^4=144^4\)
\(8^{12}=\left(8^3\right)^4=512^4\)
\(144^4< 512^4\Rightarrow12^8< 8^{12}\)
b)\(\left(-5\right)^{39}=\left[\left(-5\right)^3\right]^{13}=\left(-125\right)^{13}\)
\(\left(-2\right)^{91}=\left[\left(-2\right)^7\right]^{13}=\left(-128\right)^{13}\)
\(\left(-125\right)^{13}>\left(-128\right)^{13}\Rightarrow\left(-5\right)^{39}>\left(-2\right)^{91}\)
Ta có:
giả sử: A = n^2 + 11n + 39 chia hết cho 49 => A chia hết cho 7
mà : n^2 + 11n + 39 = (n+9)(n+2) +21 chia hết cho 7
=> (n+9)(n+2) chia hết cho 7
lại có: (n+9) - (n+2) = 7 nên (n+9) và (n+2) đồng thời chia hết cho 7
=>(n+9)(n+2) chia hết cho 49
mà: (n+9)(n+2) +21 chia hết cho 49
=> 21 chia hết cho 49 vô lí => đpcm
ta có A/B=...........................=(1.3.5...45).(2.4.6.....46/(4.6.8.....48)(5.7.9....49)=3.2/47.48.49<1
=>A<B
xét A có tử nhỏ hơn mẫu =>A<1<133
=>A<133
Bài 1:
a: Sửa đề: 1/3^200
1/2^300=(1/8)^100
1/3^200=(1/9)^100
mà 1/8>1/9
nên 1/2^300>1/3^200
b: 1/5^199>1/5^200=1/25^100
1/3^300=1/27^100
mà 25^100<27^100
nên 1/5^199>1/3^300
a) \(12^8=\left(12^2\right)^4=144^4\)
\(8^{12}=\left(8^3\right)^4=512^4\)
Vì \(144^4< 512^4\Rightarrow12^8< 8^{12}\)
Vậy \(12^8< 8^{12}\)
b) \(\left(-5\right)^{39}=\left[\left(-5\right)^3\right]^{13}=\left(-125\right)^{13}\)
\(\left(-2\right)^{91}=\left[\left(-2\right)^7\right]^{13}=\left(-128\right)^{13}\)
Vì \(\left(-125\right)^{13}>\left(-128\right)^{13}\Rightarrow\left(-5\right)^{39}>\left(-2\right)^{91}\)
Vậy \(\left(-5\right)^{39}>\left(-2\right)^{91}\)